Единица измерения интенсивности теплового излучения. Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников. Индикация измерений и режимов работы прибора

Все физические тела, температура которых больше абсолютного нуля, испускают тепловые лучи.Тепловое излучение – электромагнитное излучение, испускаемое веществомза счет его внутренней энергии .

Интенсивность теплового излучения резко убывает с уменьшением температуры тел. Большинство твердых и жидких тел имеют сплошной спектр излучения, т.е. излучают волны всех длинλ.

Видимое человеком излучение (свет): λ = 0,40-0,75 мкм.

Инфракрасный (невидимый свет): λ = 0,75-400 мкм. Далее радиоволновой диапазон.

Средства измерения, определяющие температуру тел по их тепловому излучению, называютпирометрами излучения . Пирометры используются для измерения температуры в диапазоне 300-6000 о С. Для измерения температур больше 3000 о С пирометры являются практически единственными СИ, т.к. они бесконтактны. Теоретически верхний предел измерения пирометров неограничен. В пирометрах используется в основном видимый свет и инфракрасный диапазон.

Измерение температуры тел по их тепловому излучению основывается на закономерностях, полученных дляабсолютно черного тела . Если на внешнюю поверхность тела падает поток лучистой энергии Ф, то он частично поглощается Фп, отражается Фот и пропускается Фпр. Соотношение между этими потоками зависит от свойств тела и, в частности, от состояния его поверхности (степени шероховатости, цвета, температуры). Если тело поглощает весь падающий на него лучистый поток, токоэффициент поглощения его и такое тело называютабсолютно черным .

Реальные тела не являются абсолютно черными, и лишь некоторые из них по оптическим свойствам близки к ним, например, нефтяная сажа, платиновая чернь, черный бархат в области видимого света имеютα, мало отличающийся от 1.

Внешняя поверхность тел не только поглощает, но и испускает собственное излучение, зависящее от температуры.

В соответствии с законом Кирхгофаизлучательная способность тел пропорциональна их коэффициентам поглощения. Так как коэффициент поглощения абсолютно черного тела α абс.ч.т. =1, то оно обладает максимальной излучательной способностью.

В пирометрии излучения в качестве величин, характеризующих тепловое излучение тел, применяют энергетическую светимость (излучательность) и энергетическую яркость (лучистость). При этом следует различать полную и спектральную светимость и яркость.

Под полнойэнергетической светимостью понимают полную (интегральную)поверхностную плотность излучаемой мощности .

Энергетической яркостью тела в данном направлении называетсямощность излучения в единичный телесный угол с единицы площади проекции поверхности тела на плоскость, перпендикулярную данному направлению. Энергетическая яркость является основной величиной, непосредственно воспринимаемой человеческим глазом, а также всеми пирометрами, основанными на измерении температуры по тепловому излучению.


Все реальные тела по степени поглощения ими лучистой энергии отличаются от черного тела и имеют коэффициент поглощения меньше единицы. Излучательная способность реальных тел также отличается от лучеиспускательной способности черного тела и может быть охарактеризована коэффициентом излучения полнымε и спектральнымε λ .

Реальные тела при одинаковой температуре имеют различную излучательную способность , оценку которой производят по отношению к излучательной способности абсолютно черного тела (значок * относится к абсолютно черному телу)

гдеε λ –коэффициент спектрального излучения (степень черноты монохроматического излучения);

ε– коэффициент полного излучения (степень черноты полного излучения);

Е λ , Е λ * - спектральная энергетическая светимость;

В λ , В λ * - спектральная энергетическая яркость (воспринимается глазом);

Е, Е * - полная энергетическая светимость.

ε λ является функцией длины волныλ и температуры Т. Тело, у которогоε λ не зависит от температуры и λ, называют серым.

Зависимость между спектральной энергетической светимостью абсолютно черного тела Е λ * , его температурой Т и длиной волныλустанавливаетсязаконом Планка (см. рисунок 1.17)

где с 1 , с 2 – константы.

Для выбранной λ с увеличением температуры резко возрастает Е λ * или В λ * , так как

В λ * =k λ ∙ Е λ * . (1.32)

Указанный факт устанавливает возможность измерения температуры тела по его спектральной яркости с высокой чувствительностью.

Из графика (рисунок 1.17) видно, чтоλ max уменьшается с увеличением температуры. По мере уменьшения температуры черного тела максимум распределения энергии его излучения смещается в сторону длинноволновой области спектра.

Рисунок 1.17 – Семейство кривых Е λ * , построенных по закону Планка

Это и явилось основанием использовать для измерения яркостной температуры тел инфракрасную область спектра.

Для реальных тел, имеющих каждый свой ε λ

В λ = ε λ ∙ В λ * . (1.33)

Еслиреальные тела имеют одну и ту же температуру , то из-за разностиε λ измеренныезначения В λ будут различаться , что не позволяет иметь единую шкалу прибора, отградуированную в значениях истинной температуры различных объектов. В связи с этим шкалу пирометра приходится градуировать по излучению абсолютно черного тела.

Так как излучательная способность реальных тел меньше, чем черных, то показания пирометра будут соответствовать не действительной температуре реального тела, а дают условную температуру, в данном случае так называемую яркостную температуру.

Яркостной температурой реального тела называют такую температуру абсолютно черного тела, при которой его спектральная яркость В * (λ , Тя) равна спектральной яркости реального тела В (λ , Т) при его действительной температуре Т.

Используя (1.31), (1.32), (1.33), получим

Видно, что яркостная температура всегда меньше действительной температуры, так как ε λ < 1.

Приборы, предназначенные для измерения яркостной температуры в видимой части спектра, обычно называютоптическими и фотоэлектрическими пирометрами.

Как видно из рисунка 1.17, с повышением температуры максимум кривой распределения энергии излучения по спектру смещается в сторону коротких волн. Длина волныλ max , соответствующая максимуму кривой распределения энергии в спектре излучения черного тела, связана с абсолютной температурой Т соотношением

гдеb – постоянная, равная 2896 мкм К.

Соотношение (1.35) носит название закона смещения Вина. Пунктирная линия (см. рисунок 1.17), проходящая через максимумы всех кривых, соответствует закону смещения Вина.

В видимой части спектра смещениеλ max и, следовательно, перераспределение энергии, вызываемое изменением температуры тела, приводит к изменению его цвета. Это послужило основанием существующиеметоды измерения температур тел , основанные на изменении с температурой распределения энергии внутри данного участка спектра излучения, назватьцветовыми методами . Условная температура тела, измеренная этими методами, называется цветовой температурой.

Наибольшее распространение из существующих получил метод измерения цветовой температуры в видимой части спектра по отношению энергетических яркостей в двух спектральных интервалах.

Цветовой температурой (Тц) называется такая температура абсолютно черного тела, при которой отношение его спектральных энергетических яркостей при длинах волнλ 1 иλ 2 равно отношению спектральных яркостей реального тела при тех же длинах волн и его действительной температуры Т.

Известно, что . Учитывая (1.31), (1.32), (1.33), получим

Практически серыми считают реальные тела: керамика, оксиды металлов, огнеупорные материалы, гранит и др. Преимущества цветового метода для них очевидны, так как яркостная температура всегда, в отличие от цветовой, ниже действительной.

Приборы, предназначенные для измерения цветовой температуры по отношению спектральных энергетических яркостей, принято называтьпирометрами спектрального отношения или цветовыми пирометрами .

1. За счет каких процессов образуется тепло в организме человека? Каким путем организм теряет большую часть тепла?

Образование тепла в организме человека происходит за счет окислительных реакций и сокращения мышц, а также поглощения тепла получаемого извне от оборудования, нагретых веществ, ламп накаливания и др.

Большую часть тепла организм теряет за счёт теплового излучения (до 60%).

2. Какими способами происходит отдача тепла организмом человека?

Отдача тепла организмом в окружающую среду осуществляется путем конвекции в результате нагревания воздуха, омывающего поверхность тела, (примерно 30 %), испарения влаги (пота) с поверхности кожи (в среднем 20 – 29 %), теплового излучения на окружающие предметы, имеющие более низкую чем кожа температуру поверхности (до 60 %).

3. От каких параметров зависит величина интенсивности теплового излучения на рабочем месте? Указать единицу измерения интенсивности.

Интенсивность теплового излучения Q (Вт/м2) на рабочем месте можно рассчитать по формуле: , где F – площадь излучающей поверхности источника, м2; T ° – температура излучающей поверхности, К; l – расстояние от излучающей поверхности до работающего, м. Единица измерения – Вт/м².

4. От какого параметра излучения зависит глубина его проникновения в живую ткань? Воздействие излучения на какие органы наиболее опасно?

Зависит от длины волны. Лучи длинноволнового диапазона ИК – излучения (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 – 0,2 мм. Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) обладают способностью проникать в ткани организма на несколько сантиметров.

Клетки головного мозга, лёгкие, почки, мышцы.

5. Какой диапазон ИК-излучения при облучении вызывает более тяжелые последствия?

Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) легко проникают через кожу и черепную коробку в мозговую ткань и могут воздействовать на клетки головного мозга, вызывая его тяжелые поражения.

6. Какое специфическое заболевание может вызвать нарушение терморегуляции? Каковы симптомы этого заболевания?

ИК-излучение может привести к специфическому заболеванию – тепловому удару , проявляющегося в головной боли, головокружении, учащении пульса, ускорении дыхания, падении сердечной деятельности, потере сознания и др.

7. Какое профессиональное заболевание может вызвать длительное тепловое облучение? Какой диапазон ИК-излучения при этом наиболее опасен?

При длительном облучении глаз у работников развивается профессиональное заболевание – катаракта (помутнение хрусталика). Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) наиболее опасны.

8. Через величину какой характеристики оценивается действие теплового излучения на человека? Указать единицу ее измерения.

Действие теплового излучения на человека оценивается через величину, названную интенсивностью теплового облучения , Вт/м 2 .

9. От каких факторов зависит эффект воздействия теплового излучения?

Тепловой эффект воздействия облучения зависит от множества факторов:

1)температуры источника излучения, 2) интенсивности теплового излучения на рабочем месте, 3) спектра излучения, 4) площади излучающей поверхности, 5) расстояния между излучающей поверхностью и телом человека, 6) размера облучаемого участка тела, 7) длительности облучения, 8) одежды и т.п.

10. В каких случаях будет более тяжелым эффект воздействия теплового излучения?

Чем больше величина облучаемой поверхности, чем продолжительнее период облучения и чем ближе облучаемый участок организма к важным жизненным органам, тем тяжелее эффект воздействия.

11. Что такое терморегуляция? Какова функция данного механизма?

Регулирование теплообмена осуществляется путем изменения количества вырабатываемого в организме тепла и путем увеличения или уменьшения его передачи в окружающую среду за счет соответствующих реакций одного из основных механизмов приспособления – терморегуляции.

Терморегуляция – совокупность физиологических процессов, обеспечивающих постоянство температуры тела человека в допустимых физиологических границах 36,4 – 37,5 °С. Данный диапазон температур внутренних органов человека наиболее благоприятен для протекания в организме биохимических реакций и деятельности мозга.

12. При тепловом облучении допустимые значения какого параметра и в зависимости от какого фактора устанавливаются ГОСТ 12.1.005 – 88?

Допустимая интенсивность теплового облучения работающих в соответствии с санитарно-гигиеническими требованиями (ГОСТ 12.1.005 – 88) устанавливается в зависимости от площади облучаемой поверхности тела .

13. Какими способами обеспечивается защита работников от перегревания? Какой из способов является наиболее распространенным?

Способы обеспечения защиты работников от перегревания:

1) дистанционное управление ходом технологического процесса, 2) использование защитных экранов, 3) водяных и воздушных завес, 4) воздушное душирование, 5) применение спецодежды и средств индивидуальной защиты, 6) оборудование комнат или кабин для кратковременного отдыха с подачей в них кондиционированного воздуха.

14. Какие из исследуемых экранов являлись теплоотражающими? Из каких других материалов изготавливают такие экраны?

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов используют альфоль (ал. фольга), листовой алюминий, оцинкованную сталь, алюминиевую краску.

15. Какие из исследуемых экранов являлись теплопоглощающими? Из каких других материалов изготавливают такие экраны?

Теплопоглощающие экраны изготавливают из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, брезент, шлаковату.

16. Что используют на производстве в качестве теплоотводящих экранов?

В качестве теплоотводящих экранов используются водяные завесы, свободно падающие в виде пленки или орошающие другую экранирующую поверхность, либо заключенные в специальный кожух из стекла или металла змеевики с принудительно циркулирующей в них холодной водой.

Интенсивность теплового излучения (Вт/м 2) определяется с помощью измерителя плотности теплового потока ИПП–2.

Измеритель ИПП-2 предназначен для измерений по ГОСТ 25380-82 интенсивности теплового потока, проходящего через обмуровку и теплоизоляцию энергообъектов. В комплект с прибором входит преобразователь плотности теплового потока с датчиком на пружине ПТП–Х–П (рис. 3а) и зонд для измерения температуры поверхности (рис. 3б).

Рис. 3.3а. Зонд для измерения плотности теплового потока

с пружиной (ПТП-Х-П)

Рис. 3.3б. Зонд для измерения температуры поверхности

Конструктивно прибор ИПП-2 (рисунок 4) выполнен в пластмассовом корпусе. На передней панели блока располагаются кнопки В и », а на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя плотности теплового потока или температуры.

Рис. 3.4. Внешний вид прибора ИПП-2:

1 – индикация режимов работы аккумулятора; 2 – индикация нарушения порогов; 3 – кнопка » ; 4 – кнопка В; 5 – разъём подключения первичного преобразователя; 6 – светодиодный четырехразрядный семисегментный индикатор; 7 – разъем для подключения к компьютеру; 8 – разъем для подключения сетевого адаптера

Функционирование прибора осуществляется в одном из режимов: РАБОТА и НАСТРОЙКА.

Режим РАБОТА. Является основным эксплуатационным режимом. В данном режиме производится циклическое измерение выбранного параметра. Кратковременным нажатием кнопки » осуществляется переход между режимами измерения плотности теплового потока и температуры, а также индикации заряда аккумуляторов в процентах 0...100%. Нажатием кнопки » в течение двух секунд осуществляется переход прибора в режим «SLEEP», в этом режиме прибор гасит светодиодную индикацию, но продолжает измерения температуры и запись статистики. Выход из режима «SLEEP» производится нажатием любой кнопки. Нажатием кнопки В в течение двух секунд осуществляется переход прибора в режим НАСТРОЙКА. Кратковременное нажатие кнопки В выключает/включает прибор. В выключенном состоянии прибор прекращает измерения и запись автоматической статистики, при этом все настройки работы прибора и часов реального времени сохраняются. В режиме РАБОТА прибор может производить периодическую автоматическую запись измеренных значений в энергонезависимую память с привязкой ко времени. Схема режима РАБОТА приведена на рисунке 5.

Рис. 3.5. Схема режима РАБОТА

Светодиодная индикация в режиме РАБОТА. Светодиод 1 (рис. 3.4) характеризует состояние аккумуляторной батареи. В режиме заряда при подключенном сетевом адаптере светодиод горит постоянно до состояния 100% зарядки, затем гаснет. В режиме работы с отключенным сетевым адаптером светодиод погашен, и в случае если батарея заряжена менее чем на 10%. Светодиод 2 (рис. 3.4) миганием информирует о нарушении порогов. В режиме «SLEEP» мигает точка в четвертом разряде семисегментного индикатора.

Режим НАСТРОЙКА. Предназначен для задания и записи в энергонезависимую память прибора требуемых при эксплуатации рабочих параметров измерения. Заданные значения параметров сохраняются в памяти прибора при отсутствии питания (исключение составляют дата/время). Общая схема режима НАСТРОЙКА приведена на рис. 3.6.

Рис. 3.6. Общая схема работы режима НАСТРОЙКИ

Данный режим позволяет настроить два порога, имеющиеся в приборе, по одному на каждый параметр. Пороги - это верхняя или нижняя границы допустимого изменения соответствующей величины. При превышении измеряемой температуры верхнего порогового значения или снижении ниже нижнего порогового значения прибор обнаруживает это событие и на индикаторе загорается светодиод 2 (рис. 3.4). Нарушение порогов также сопровождается звуковым сигналом.

Тепловизор – оптико-электронный измерительный прибор, предназначенный для бесконтактного наблюдения и фиксации распределения температуры исследуемой поверхности. Тепловизоры в настоящее время являются полноценным компонентом набора инструментов технических инженеров – контроль температуры применяется во всех отраслях промышленности и строительства.

Пирометр - прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света. Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.


48.Технические мероприятия профилактики вредного влияния теплового излучения и высоких температур .

К числу мероприятий, способных ослабить вредное действие тепл. излучения, относятся: механизация работ, напр. на то, чтобы работники меньше подвергались тепловому облучению; устройство у тепловыделяющих произв. источников цепных или водяных завес; применение экранов из материалов, облад. малой теплопроводностью; осуществление аэрации горячих цехов; устройство специальных комнат отдыха, а также душей, снабжение работников подсол. газир. водой (3 г соли на 1 л воды); применение такой организации труда, которая допускает чередование лиц, работающих в сильно облучаемых местах; обязат. применение спец. очков для защиты от ИК излучения и особых стекол для предотвращения воздействия ультрафиолетовых лучей.



К группе санитарно-технических мероприятий относится применение коллект. средств защиты: локализация тепловыделений, теплоизоляция горячих поверхностей, экранирование источников либо раб. мест; возд. душирование, радиационное охлаждение, мелкодисперсное распыление воды; общеобменная вентиляция или кондиционирование воздуха. Общеобменной вентиляции при этом отводится ограниченная роль – доведение условий труда до допустимых с мин. эксплуат. затратами. Уменьшению поступления теплоты в цех способствуют мероприятия, обеспеч. герметичность оборудования. Плотно подогнанные дверцы, заслонки, блокировка закрытия технолог. отверстий с работой оборудования – все это значительно снижает выделение теплоты от открытых источников.

49. Средства коллективной защиты от вредного влияния теплового излучения и высоких температур .

Снижение уровня воздействия на работающих вредных веществ или его полное устранение достигается путем проведения технолог., санитарно - технических, лечебно - профилактич. мероприятий и применением СИЗ.

К технологическим мероприятиям относятся такие как внедрение непрер. технологий, автоматизация и механизация произв. процессов, дистанц. управление, герметизация оборудования, замена опасных технолог. процессов и операций менее опасными и безопасными.

Санитарно-технические мероприятия :

оборудование рабочих мест местной вытяжной вентиляцией или переносными местными отсосами, укрытие оборудования сплошными пыленепроницаемыми кожухами с эффективной аспирацией воздуха и др.

Когда технолог., санитарно-технические меры не полностью исключают наличие вредных веществ в воздушной среде, отсутствуют методы и приборы для их контроля, проводятся лечебно-профилактические мероприятия:

организация и проведение предварительных и периодических медицинских осмотров, дыхательной гимнастики, щелочных ингаляций, обеспечение лечебно-профил. питанием и молоком и др.

Особое внимание в этих случаях должно уделяться применению СИЗ, прежде всего для защиты органов дыхания (фильтрующие и изолирующие противогазы, респираторы, защитные очки, спец. одежда).

ТЕСТЫ.

Тест 3. Микроклимат.

Микроклимат помещений – это состояние внутренней среды здания, которое оказывает как положительное, так и отрицательное воздействие на человека, характеризуется показателями температуры, подвижности и влажности

1. Среднесуточная температура за 2 дня оказалась равной +12 градусов. Какой это период года:

1) теплый, 2) холодный, 3) нельзя определить.

Ответ:

Согласно ГОСТ 30494-96 Холодный период года –период года, характеризующийся средне суточной температурой наружного воздуха, равной 8º С и ниже . Теплый период года –период года, характеризующийся среднесуточной температурой наружного воздуха выше 8º С .

Согласно установленные санитарные правила и нормы (СНиП 23-01-99). Микроклимат производственных помещений достаточно сильно зависит от оценки характера одежды, так как она помогает добиться теплоизоляции и акклиматизироваться организму в разное время года. Теплым сезоном можно назвать температурный режим +10 и выше, а холодным - ниже +10.

2. Потеря тепла за счет конвекции пропорциональна:

Ответ:

Конве́кция (от лат. convectiō - «перенесение») - вид теплообмена, при котором внутренняя энергия передается струями и потоками.

В тех случаях, когда в теплообмене участвуют жидкости или газы, обычно возникают явления конвекции: одновременно с потоком тепла возникают потоки вещества - более нагретые слои всплывают кверху, а менее нагретые опускаются. Такое перемешивание в громадной степени ускоряет процесс теплообмена. В случае, когда твердое тело находится в обтекающем его потоке жидкости или газа, теплообмен также носит конвекционный характер и происходит значительно быстрее, чем в покоящейся среде. Поэтому даже небольшой ветер (сквозняк) приводит к увеличению потерь тепла с поверхности тела.

Отдача организмов тепла зависит от тепловых условий окружающей среды, которые определяются температурой, влажностью, скоростью движения воздуха и лучистой энергией.



Пропорциональными называются две взаимно зависимые величины, если отношение их значений остаётся неизменным.

Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) увеличивает (уменьшает) и другую величину, то такие величины прямо пропорциональны .

3. Потери тепла за счет конвекции обратно пропорциональны:

1) влажности воздуха, 2) температуре тела, 3) температуре воздуха.

Ответ:

Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) уменьшает (увеличивает) и другую величину, то такие величины обратно пропорциональны .

4. Потери тепла за счет конвекции не зависит от:

1) влажности воздуха, 2) температуре тела, 3) температуре воздуха.

Ответ:

5. Потери тепла за счет испарения пропорциональны:

1) влажности воздуха, 2) температуре тела, 3) плотности воздуха.

Ответ:

Испаре́ние - процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества. Процесс испарения является обратным процессу конденсации

6. Потери тепла за счет испарения не зависят:

1) влажности воздуха, 2) площади поверхности тела, 3) температуры воздуха.

Ответ:

7. При нормировании параметров микроклимата учитывается:

1) время года; 2) температура тела; 3) площадь поверхности.

Ответ:

Параметры микроклимата в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4. 548-96 должны обеспечивать сохранение теплового баланса человека с окружающей производственной средой и поддержание оптимального или допустимого теплового состояния организма.

Параметрами, характеризующими микроклимат в производственных помещениях, являются:

Температура воздуха, t˚C

Температура поверхностей (стен, потолка, пола, ограждений оборудования и т.п.), t п ˚C

Относительная влажность воздуха, W %

Скорость движения воздуха, V м/с

Интенсивность теплового облучения, P Вт/м 2

8. Какая скорость воздушного потока допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) до 1м/с; 2) до 0,5 м/с; 3) до 0,3 м/с; 4) до 0,1 м/с.

Ответ:

Нервно-эмоциональное напряжение может быть вызвано ответственностью за выполняемую работу, высокими требованиями к качеству сварных соединений, сложностью или необычностью работы, особенно в условиях дефицита времени.

согласно ГОСТ 30494-96 –изменение скорости движения воздуха –не более 0,07 м/с для оптимальных показателей и 0,1 м/с –для допустимых;

9. Какая температура (в градусах Цельсия) допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) 18-20; 2) 20-22; 3) 22-24 ; 4) 24-26.

Ответ:

Оптимальные и допустимые показатели температуры , относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений должны соответствовать величинам, приведенным в соответствующих документах. В кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники, а также в других помещениях при выполнении работ операторского типа, связанных с нервно-эмоциональным напряжением , должны соблюдаться оптимальные величины температуры воздуха (22-24°С) , его относительной влажности (40–60%,) и скорости движения (не более 0,1 м/с).

10. Какая влажность воздуха (в %) допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) 30-40; 2) 40-60; 3) 45-55; 4) 50-60.

Ответ:

11. Какие работы связанных с нервно-эмоциональным напряжением:

1) в кабинете; 2) за столом; 3) в кабине.

Ответ:

Нервно-эмоциональное напряжение - связно с наличием аварийных ситуаций, напряжением внимания и слухового анализатора в условиях шума.

12. Какова интенсивность теплового облучения от нагретых частей оборудования при 15% облучаемого тепла (Вт/м 2):

1) 30; 2) 40; 3) 50; 4) 60.

Ответ:

Интенсивность теплового облучения тела человека - тепловая энергия источника на единицу поверхности тела человека, Вт/м2.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий в производственных помещениях.

Наибольшую опасность возникновения лучистого тепла представляет расплавленный или нагретый до высоких температур металл. Передача тепла может происходить путем конвекции, теплопроводности и излучения. Перенос тепла осуществляется: при конвекции - движущейся средой (потоками воздуха, пара или жидкости); при теплопроводности - передачей тепла в твердых телах; при излучении - интенсивными инфракрасными лучами, которые непосредственно воздуха не нагревают, но при поглощении их твердыми телами лучистая энергия переходит в тепловую. Нагретые твердые тела становятся источниками теплоты и путем конвекции нагревают воздух в помещении.

Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников

Облучаемая поверхность тела, % Интенсивность теплового облучения, Вт/м2, не более

50 и более 35

не более 25 100

13. Какова интенсивность теплового облучения от нагретых частей оборудования при 40% облучаемого тепла (Вт/м 2):

1) 50; 2) 70; 3) 90; 4) 100.

Ответ:

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50% поверхности человека и более, 70 Вт/м2–при облучении 25 .50% поверхности и 100 Вт/м2–при облучении не более 25% поверхности тела.

14. Какова интенсивность теплового облучения от нагретых частей оборудования при 60% облучаемого тепла (Вт/м 2):

1) 80; 2) 90; 3) 100; 4) 110.

Ответ:

15. Какова интенсивность теплового облучения от открытых источников (Вт/м 2):

1) 120; 2) 130; 3) 140; 4) 150.

Ответ:

Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25% поверхности тела и обязательно использование средств индивидуальной защиты.

16. К какому источнику относится лампа накаливания:

1) открытому; 2) закрытому; 3) ни к какому.

Ответ:

Ла́мпа нака́ливания - искусственный источник света, в котором свет испускает тело накала , нагреваемое электрическим током до высокой температуры. В качестве тела накала чаще всего используется спираль из тугоплавкого металла (чаще всего - вольфрама), либо угольная нить. Чтобы исключить окисление тела накала при контакте с воздухом, его помещают в вакуумированную колбу, либо колбу, заполненную инертными газами или парами галогенов.

Открытого или закрытого типа. В первом случае лампа и патрон не отделяются от внешней среды, во втором ― ограничены оболочкой. Дополнительный специальный уплотнитель делает возможным использование светильников в помещениях с влажным режимом.

17. Какова наиболее оптимальная температура в градусах Цельсия нагретых поверхностей, с которыми должен соприкасаться работник:

1) 30; 2) 35; 3) 40; 4) 45.

Ответ:

Теплозащитные средства должны обеспечивать облученность на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 308 К (35 °С) при температуре внутри источника до 373 К (100 °С) и не выше 318 К (45 °С) при температурах внутри источника выше 373 К (100 °С).

18. Какова максимальная допустимая температура в градусах Цельсия нагретых поверхностей, с которыми должен соприкасаться работник:

1) 35; 2) 40; 3) 45; 4) 50.

Ответ:

Во всех случаях температура нагретых поверхностей технологического оборудования или его ограждающих устройств в целях профилактики типовых травм не должна превышать 45°С .

19. На какое расстояние нужно удалить рабочее место от конструкции, температура которых выше допустимой на 4 градуса:

1) 1м ; 2) 2м; 3) 3м; 4) 4м.

Ответ:

При температуре внутренних поверхностей ограждающих конструкций ниже или выше оптимальных величин температуры воздуха рабочие места должны быть удалены от них на расстояние не менее 1 м .

20. Какие из средств защиты не относятся к индивидуальным:

1) очки; 2) костюмы; 3) экраны; 4) спецодежда.

Ответ:

Средства индивидуальной защиты (СИЗ) - средства, используемые работником для предотвращения или уменьшения воздействия вредных и опасных производственных факторов, а также для защиты от загрязнения. Применяются в тех случаях, когда безопасность работ не может быть обеспечена конструкцией оборудования, организацией производственных процессов, архитектурно-планировочными решениями и средствами коллективной защиты

Статья 212 ТК РФ устанавливает ряд условий, направленных на обеспечение безопасных условий труда. Одно из них - приобретение и выдача работодателем сертифицированных специальной одежды, обуви и других средств индивидуальной защиты. При обеспечении работников средствами индивидуальной защиты (далее - СИЗ), средствами для смыва и обезвреживания работодатель исполняет нормы трудового законодательства и защищает работников от воздействия вредных и опасных факторов производства.