Prism height definition. Prism base area: from triangular to polygonal

Definition. Prism is a polyhedron, all of whose vertices are located in two parallel planes, and in these same two planes lie two faces of the prism, which are equal polygons with correspondingly parallel sides, and all edges that do not lie in these planes are parallel.

Two equal faces are called prism bases(ABCDE, A 1 B 1 C 1 D 1 E 1).

All other faces of the prism are called side faces(AA 1 B 1 B, BB 1 C 1 C, CC 1 D 1 D, DD 1 E 1 E, EE 1 A 1 A).

All side faces form lateral surface of the prism .

All lateral faces of the prism are parallelograms .

The edges that do not lie at the bases are called the lateral edges of the prism ( AA 1, BB 1, CC 1, DD 1, EE 1).

Prism diagonal is a segment whose ends are two vertices of a prism that do not lie on the same face (AD 1).

The length of the segment connecting the bases of the prism and perpendicular to both bases at the same time is called prism height .

Designation:ABCDE A 1 B 1 C 1 D 1 E 1. (First, in the order of traversal, the vertices of one base are indicated, and then, in the same order, the vertices of another; the ends of each side edge are designated by the same letters, only the vertices lying in one base are designated by letters without an index, and in the other - with an index)

The name of the prism is associated with the number of angles in the figure lying at its base, for example, in Figure 1 there is a pentagon at the base, so the prism is called pentagonal prism. But because such a prism has 7 faces, then it heptahedron(2 faces - the bases of the prism, 5 faces - parallelograms, - its side faces)

Among straight prisms, a particular type stands out: regular prisms.

A straight prism is called correct, if its bases are regular polygons.

A regular prism has all lateral faces equal rectangles. A special case of a prism is a parallelepiped.

Parallelepiped

Parallelepiped is a quadrangular prism, at the base of which lies a parallelogram (an inclined parallelepiped). Right parallelepiped- a parallelepiped whose lateral edges are perpendicular to the planes of the base.

Rectangular parallelepiped- a right parallelepiped whose base is a rectangle.

Properties and theorems:


Some properties of a parallelepiped are similar to the known properties of a parallelogram. A rectangular parallelepiped having equal dimensions is called cube .All faces of a cube are equal squares. The square of the diagonal is equal to the sum of the squares of its three dimensions

,

where d is the diagonal of the square;
a is the side of the square.

An idea of ​​a prism is given by:

  • various architectural structures;
  • children's toys;
  • packaging boxes;
  • designer items, etc.





The area of ​​the total and lateral surface of the prism

Total surface area of ​​the prism is the sum of the areas of all its faces Lateral surface area is called the sum of the areas of its lateral faces. The bases of the prism are equal polygons, then their areas are equal. That's why

S full = S side + 2S main,

Where S full- total surface area, S side-lateral surface area, S base- base area

The lateral surface area of ​​a straight prism is equal to the product of the perimeter of the base and the height of the prism.

S side= P basic * h,

Where S side-area of ​​the lateral surface of a straight prism,

P main - perimeter of the base of a straight prism,

h is the height of the straight prism, equal to the side edge.

Prism volume

The volume of a prism is equal to the product of the area of ​​the base and the height.

Definition 1. Prismatic surface
Theorem 1. On parallel sections of a prismatic surface
Definition 2. Perpendicular section of a prismatic surface
Definition 3. Prism
Definition 4. Prism height
Definition 5. Right prism
Theorem 2. The area of ​​the lateral surface of the prism

Parallelepiped:
Definition 6. Parallelepiped
Theorem 3. On the intersection of the diagonals of a parallelepiped
Definition 7. Right parallelepiped
Definition 8. Rectangular parallelepiped
Definition 9. Measurements of a parallelepiped
Definition 10. Cube
Definition 11. Rhombohedron
Theorem 4. On the diagonals of a rectangular parallelepiped
Theorem 5. Volume of a prism
Theorem 6. Volume of a straight prism
Theorem 7. Volume of a rectangular parallelepiped

Prism is a polyhedron whose two faces (bases) lie in parallel planes, and the edges that do not lie in these faces are parallel to each other.
Faces other than the bases are called lateral.
The sides of the side faces and bases are called prism ribs, the ends of the edges are called the vertices of the prism. Lateral ribs edges that do not belong to the bases are called. The union of lateral faces is called lateral surface of the prism, and the union of all faces is called the full surface of the prism. Prism height called the perpendicular dropped from the point of the upper base to the plane of the lower base or the length of this perpendicular. Direct prism called a prism whose side edges are perpendicular to the planes of the bases. Correct called a straight prism (Fig. 3), at the base of which lies a regular polygon.

Designations:
l - side rib;
P - base perimeter;
S o - base area;
H - height;
P^ - perpendicular section perimeter;
S b - lateral surface area;
V - volume;
S p is the area of ​​the total surface of the prism.

V=SH
S p = S b + 2S o
S b = P ^ l

Definition 1 . A prismatic surface is a figure formed by parts of several planes parallel to one straight line, limited by those straight lines along which these planes successively intersect one another*; these lines are parallel to each other and are called edges of the prismatic surface.
*It is assumed that every two successive planes intersect and that the last plane intersects the first

Theorem 1 . Sections of a prismatic surface by planes parallel to each other (but not parallel to its edges) are equal polygons.
Let ABCDE and A"B"C"D"E" be sections of a prismatic surface by two parallel planes. To make sure that these two polygons are equal, it is enough to show that triangles ABC and A"B"C" are equal and have the same direction of rotation and that the same holds for triangles ABD and A"B"D", ABE and A"B"E". But the corresponding sides of these triangles are parallel (for example, AC is parallel to AC) like the line of intersection of a certain plane with two parallel planes; it follows that these sides are equal (for example, AC is equal to A"C"), like opposite sides of a parallelogram, and that the angles formed by these sides are equal and have the same direction.

Definition 2 . A perpendicular section of a prismatic surface is a section of this surface by a plane perpendicular to its edges. Based on the previous theorem, all perpendicular sections of the same prismatic surface will be equal polygons.

Definition 3 . A prism is a polyhedron bounded by a prismatic surface and two planes parallel to each other (but not parallel to the edges of the prismatic surface)
The faces lying in these last planes are called prism bases; faces belonging to the prismatic surface - side faces; edges of the prismatic surface - side ribs of the prism. By virtue of the previous theorem, the base of the prism is equal polygons. All lateral faces of the prism - parallelograms; all side ribs are equal to each other.
Obviously, if the base of the prism ABCDE and one of the edges AA" in size and direction are given, then it is possible to construct a prism by drawing edges BB", CC", ... equal and parallel to edge AA".

Definition 4 . The height of a prism is the distance between the planes of its bases (HH").

Definition 5 . A prism is called straight if its bases are perpendicular sections of the prismatic surface. In this case, the height of the prism is, of course, its side rib; the side edges will be rectangles.
Prisms can be classified according to the number of lateral faces equal to the number of sides of the polygon that serves as its base. Thus, prisms can be triangular, quadrangular, pentagonal, etc.

Theorem 2 . The area of ​​the lateral surface of the prism is equal to the product of the lateral edge and the perimeter of the perpendicular section.
Let ABCDEA"B"C"D"E" be a given prism and abcde its perpendicular section, so that the segments ab, bc, .. are perpendicular to its lateral edges. The face ABA"B" is a parallelogram; its area is equal to the product of the base AA " to a height that coincides with ab; the area of ​​the face ВСВ "С" is equal to the product of the base ВВ" by the height bc, etc. Consequently, the side surface (i.e. the sum of the areas of the side faces) is equal to the product of the side edge, in other words, the total length of the segments AA", ВВ", .., for the amount ab+bc+cd+de+ea.

1. The tetrahedron has the smallest number of edges - 6.

2. A prism has n faces. What polygon lies at its base?

(n - 2) - square.

3. Is a prism straight if its two adjacent side faces are perpendicular to the plane of the base?

Yes, it is.

4. In which prism are the lateral edges parallel to its height?

In a straight prism.

5. Is a prism regular if all its edges are equal to each other?

No, it may not be direct.

6. Can the height of one of the side faces of an inclined prism also be the height of the prism?

Yes, if this face is perpendicular to the base.

7. Is there a prism in which: a) the side edge is perpendicular to only one edge of the base; b) only one side face is perpendicular to the base?

a) yes. b) no.

8. A regular triangular prism is divided into two prisms by a plane passing through the midlines of the bases. What is the ratio of the lateral surface areas of these prisms?

By theorem 27 we find that the lateral surfaces are in the ratio 5: 3

9. Will the pyramid be regular if its side faces are regular triangles?

10. How many faces perpendicular to the plane of the base can a pyramid have?

11. Is there a quadrangular pyramid whose opposite side faces are perpendicular to the base?

No, otherwise there would be at least two straight lines passing through the top of the pyramid, perpendicular to the bases.

12. Can all the faces of a triangular pyramid be right triangles?

Yes (Figure 183).

The video course “Get an A” includes all the topics necessary to successfully pass the Unified State Exam in mathematics with 60-65 points. Completely all tasks 1-13 of the Profile Unified State Exam in mathematics. Also suitable for passing the Basic Unified State Examination in mathematics. If you want to pass the Unified State Exam with 90-100 points, you need to solve part 1 in 30 minutes and without mistakes!

Preparation course for the Unified State Exam for grades 10-11, as well as for teachers. Everything you need to solve Part 1 of the Unified State Exam in mathematics (the first 12 problems) and Problem 13 (trigonometry). And this is more than 70 points on the Unified State Exam, and neither a 100-point student nor a humanities student can do without them.

All the necessary theory. Quick ways solutions, pitfalls and secrets of the Unified State Exam. All current tasks of part 1 from the FIPI Task Bank have been analyzed. The course fully complies with the requirements of the Unified State Exam 2018.

The course contains 5 large topics, 2.5 hours each. Each topic is given from scratch, simply and clearly.

Hundreds of Unified State Exam tasks. Word problems and probability theory. Simple and easy to remember algorithms for solving problems. Geometry. Theory, reference material, analysis of all types of Unified State Examination tasks. Stereometry. Tricky solutions, useful cheat sheets, development of spatial imagination. Trigonometry from scratch to problem 13. Understanding instead of cramming. Clear explanations of complex concepts. Algebra. Roots, powers and logarithms, function and derivative. A basis for solving complex problems of Part 2 of the Unified State Exam.

Different prisms are different from each other. At the same time, they have a lot in common. To find the area of ​​the base of the prism, you will need to understand what type it has.

General theory

A prism is any polyhedron whose sides have the shape of a parallelogram. Moreover, its base can be any polyhedron - from a triangle to an n-gon. Moreover, the bases of the prism are always equal to each other. What does not apply to the side faces is that they can vary significantly in size.

When solving problems, not only the area of ​​the base of the prism is encountered. It may require knowledge of the lateral surface, that is, all the faces that are not bases. Full surface there will already be a union of all the faces that make up the prism.

Sometimes problems involve height. It is perpendicular to the bases. The diagonal of a polyhedron is a segment that connects in pairs any two vertices that do not belong to the same face.

It should be noted that the base area of ​​a straight or inclined prism does not depend on the angle between them and the side faces. If they have the same figures on the top and bottom faces, then their areas will be equal.

Triangular prism

It has at its base a figure with three vertices, that is, a triangle. As you know, it can be different. If so, it is enough to remember that its area is determined by half the product of the legs.

The mathematical notation looks like this: S = ½ av.

To find out the area of ​​the base in general view, the formulas will be useful: Heron and the one in which half of the side is taken to the height drawn to it.

The first formula should be written as follows: S = √(р (р-а) (р-в) (р-с)). This notation contains a semi-perimeter (p), that is, the sum of three sides divided by two.

Second: S = ½ n a * a.

If you need to know the area of ​​the base triangular prism, which is regular, then the triangle turns out to be equilateral. There is a formula for it: S = ¼ a 2 * √3.

Quadrangular prism

Its base is any of the known quadrangles. It can be a rectangle or square, parallelepiped or rhombus. In each case, in order to calculate the area of ​​the base of the prism, you will need your own formula.

If the base is a rectangle, then its area is determined as follows: S = ab, where a, b are the sides of the rectangle.

When it comes to a quadrangular prism, the area of ​​the base of a regular prism is calculated using the formula for a square. Because it is he who lies at the foundation. S = a 2.

In the case when the base is a parallelepiped, the following equality will be needed: S = a * n a. It happens that the side of a parallelepiped and one of the angles are given. Then, to calculate the height, you will need to use an additional formula: n a = b * sin A. Moreover, angle A is adjacent to side “b”, and height n is opposite to this angle.

If there is a rhombus at the base of the prism, then to determine its area you will need the same formula as for a parallelogram (since it is a special case of it). But you can also use this: S = ½ d 1 d 2. Here d 1 and d 2 are two diagonals of the rhombus.

Regular pentagonal prism

This case involves dividing the polygon into triangles, the areas of which are easier to find out. Although it happens that figures can have a different number of vertices.

Since the base of the prism is regular pentagon, then it can be divided into five equilateral triangles. Then the area of ​​the base of the prism is equal to the area of ​​one such triangle (the formula can be seen above), multiplied by five.

Regular hexagonal prism

According to the principle described for a pentagonal prism, it is possible to divide the hexagon of the base into 6 equilateral triangles. The formula for the base area of ​​such a prism is similar to the previous one. Only it should be multiplied by six.

The formula will look like this: S = 3/2 a 2 * √3.

Tasks

No. 1. Given a regular straight line, its diagonal is 22 cm, the height of the polyhedron is 14 cm. Calculate the area of ​​the base of the prism and the entire surface.

Solution. The base of the prism is a square, but its side is unknown. You can find its value from the diagonal of the square (x), which is related to the diagonal of the prism (d) and its height (h). x 2 = d 2 - n 2. On the other hand, this segment “x” is the hypotenuse in a triangle whose legs are equal to the side of the square. That is, x 2 = a 2 + a 2. Thus it turns out that a 2 = (d 2 - n 2)/2.

Substitute the number 22 instead of d, and replace “n” with its value - 14, it turns out that the side of the square is 12 cm. Now just find out the area of ​​the base: 12 * 12 = 144 cm 2.

To find out the area of ​​the entire surface, you need to add twice the base area and quadruple the side area. The latter can be easily found using the formula for a rectangle: multiply the height of the polyhedron and the side of the base. That is, 14 and 12, this number will be equal to 168 cm 2. The total surface area of ​​the prism turns out to be 960 cm 2.

Answer. The area of ​​the base of the prism is 144 cm 2. The entire surface is 960 cm 2.

No. 2. Given At the base there is a triangle with a side of 6 cm. In this case, the diagonal of the side face is 10 cm. Calculate the areas: the base and the side surface.

Solution. Since the prism is regular, its base is an equilateral triangle. Therefore, its area turns out to be equal to 6 squared, multiplied by ¼ and by the square root of 3. A simple calculation leads to the result: 9√3 cm 2. This is the area of ​​one base of the prism.

All side faces are the same and are rectangles with sides of 6 and 10 cm. To calculate their areas, just multiply these numbers. Then multiply them by three, because the prism has exactly that many side faces. Then the area of ​​the lateral surface of the wound turns out to be 180 cm 2.

Answer. Areas: base - 9√3 cm 2, lateral surface of the prism - 180 cm 2.