Основные способы получения полимеров. Получение полимеров методом полимеризации поликонденсации. Влияние способов получения на свойства Какой реакцией получают полимеры

Полимеры, методы получения полимеров. Достоинства и недостатки.

Основную массу полимеров составляют органические вещества, однако известно и немало неорганических и элементорганических полимеров. Характерной чертой полимера является то, что при образовании его молекулы соединяется большое число одинаковых или разных молекул низкомолекулярных веществ - мономеров. Это приводит к тому, что получается длинная цепная молекула, которую называют макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или элементарные звенья, соединены прочными химическими связями. Сами же макромолекулы связаны между собой слабыми физическими межмолекулярными силами.
Цепное строение макромолекул и различная природа связей вдоль и между цепями определяет комплекс особых физико-химических свойств полимерного материала, таких, как, например, одновременное сочетание в нем прочности, легкости и эластичности, способности образовывать пленки и волокна. Цепное строение макромолекул ответственно также за то, что полимеры могут значительно набухать в жидкостях, образовывая при этом ряд систем, промежуточных между твердым телом и жидкостью. Растворы полимеров отличаются повышенной вязкостью.
Соединение мономеров в макромолекулы происходит в результате химических реакций, которые протекают по законам цепных или ступенчатых процессов. Число повторяющихся звеньев в макромолекуле определяет молекулярную массу полимера, которая может составлять десятки, сотни тысяч и миллионы углеродных единиц. Какой бы реакцией ни был получен полимер, он всегда состоит из набора макромолекул, различных по размеру, поэтому молекулярная масса полимера оценивается некоторой средней величиной.

При переработке, которая обычно проводится при повышенных температурах, в полимер, как правило, вводят различные необходимые добавки, такие как пластификаторы, наполнители, стабилизаторы, модификаторы свойств и другие.

Полимеризация и поликонденсация Синтетические полимеры получают в результате реакций полимеризации и поликонденсации.
Полимеризация - это процесс соединения друг с другом большого числа молекул мономера за счет кратных связей (С = С, С = О и др.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав,
Поликонденсация - зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и да более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам.

Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей. Макромолекула при цепной полимеризации образуется очень быстро и сразу же приобретает конечные размеры, т. е не возрастает при увеличении длительности процесса.
Полимеризация мономеров циклического строения происходит за счет раскрытия цикла и в ряде случаев пропекает не по цепному, а по ступенчатому механизму. Макромолекула при ступенчатой полимеризации образуется постепенно, т. е. сначала образуется димер затем тример и т.д., поэтому молекулярная масса полимера растет со временем.
Принципиальное отличие ценной полимеризации от ступенчатой и от поликонденсации состоит в том, что на разных стадиях процесса реакционная смесь всегда состоит из мономера и полимера и не содержит ди-, три-, тетрамеров. С увеличением продолжительности реакции растет лишь число макромолекул полимера, а мономер расходуется постепенно. Молекулярная масса полимера не зависит от степени завершенности реакции или, что то же, от конверсии мономера, которая определяет только выход полимера.

Существует ряд преимуществ ПКМ над традиционными видами материалов (металлов, керамики, дерева и т.п.):
1) уникальное сочетание свойств, нехарактерное для других материалов (прочностных, деформационных, ударных, упругостных, температурных, реологических, адгезионных, электрических, фрикционных, теплопроводных и других);
2) возможность управления свойствами ПКМ путем простого изменения состава и условий получения;
3) сохранение основных достоинств полимеров:
- сравнительная легкость переработки;
- низкая плотность.
Главное из преимуществ ПКМ по сравнению с традиционными материалами – это уникальное сочетание свойств. Как правило, композиционные материалы не являются “чемпионами” по отдельно взятому свойству. Но по сочетанию определенных свойств им нет равных.

Определение нормальной густоты гипсового теста

Нормальную густоту гипсового теста определяют вискозиметром Суттарда

Прибор Суттарда состоит из латунного или медного цилиндра, имеющего внутренний диаметр 50 мм и высоту 100 мм, и квадратного листового стекла, размер сторон которого 200 мм.

На стекло или бумагу, подкладываемую под стекло, наносят концентрические окружности диаметром от 60 до 200 мм, причем окружности диаметром до 140 мм наносят через 10 мм, а остальные - через 20 мм.

Навеску гипса (300 г) затворяют водой, взятой в количестве примерно 70% от массы гипса. Гипс добавляют к воде и быстро размешивают в течение 30 сек. до получения однородной массы, которую оставляют на 1 мин в спокойном состоянии, затем, дважды резко перемешав, заливают в цилиндр, установленный в центре стекла, и выравнивают поверхность гипса с краями цилиндра. Потом резким и точным движением поднимают цилиндр снизу вверх; при этом тесто разливается на стекле в конусообразную лепешку, величина которой зависит от консистенции теста. На все это затрачивается не более 30 сек.

Требуемой густотой обладает тесто, которое дает лепешку диаметром 120 мм. Нормальная густота выражается количеством воды в кубических сантиметрах, приходящимся на 100 г гипса.

Определение выхода известкового теста ускоренным методом. Определение содержания в нём непогасившихся зерен

Выход известкового теста. Ускоренное определение выхода известкового теста производят следующим образом. 200 г извести в кусках, каждый размером около 2 см, помещают в керамическую или оцинкованную посуду, объем которой легко измерить. Известь заливают водой так же, как при определении скорости гашения, и кипятят 1 ч. Во время кипячения доливают горячую воду так, чтобы она все время покрывала тесто. По окончании кипячения продолжают нагревать тесто до получения трещин на его поверхности. Выход определяют измерением получившегося объема, который умножают на 5, так как он определяется в расчете на 1 кг. Ориентировочно известь I сорта дает выход теста более 2,4 л/кг, II сорта – 2-2,4 л/кг, III сорта – 1,6-2 л/кг.

Определение содержания непогасившихся зерен. Для этого обычно используют тесто, образовавшееся в результате проведения предыдущего опыта. Это тесто доводят до консистенции молока, выливают на мелкое сито (ячейки 0,6 мм) и промывают под слабой струей воды, не растирая оставшиеся комочки и зерна. Полученный таким образом остаток высушивают при 100-105°С, охлаждают и взвешивают. Полученная масса остатка в граммах, деленная на два, дает содержание непогасившихся зерен в извести. Ориентировочно кальциевая известь I сорта должна содержать 7% непогасившихся зерен, II сорта – 11%, III сорта – 14%.

Изверженные горные породы.

Изверженные (магматические) горные породы. По виду и характеру образования их делят на глубинные (интрузивные), излившиеся (эффузивные). Изверженные горные породы образовались в результате того, что расплавленная силикатная масса - магма, составляющая внутренний слой земного шара, находясь под большим давлением слоев литосферы, при уменьшении внешнего давления и увеличении внутреннего изливалась в верхние слои земного шара и застывала, образуя горные породы.

В зависимости от содержания кремнезема изверженные горные породы делят на кислые (более 65% 5102), средние (65-55% 5102) и основные (менее 55% 5Ю2).

Глубинные (интрузивные) горные породы образовались при остывании магмы на большой глубине под слоем верхних пород в условиях высокой температуры и давления. Для них характерны полнокристаллические структуры, где отдельные слагающие их, минералы различимы невооруженным глазом, и массивные текстуры.

Проведение испытаний

3.2.1. Для испытания на равномерность изменения объема цемента готовят тесто нормальной густоты согласно п.п. 1.2.4 и 1.2.5.

Две навески теста массой 75 г каждая, приготовленные в виде шариков, помещают на стеклянную пластинку, предварительно протертую машинным маслом. Постукивают ею о твердое основание до образования из шариков лепешек диаметром 7-8 см и толщиной в середине около 1 см. Лепешки заглаживают смоченным водой ножом от наружных краев к центру до образования острых краев и гладкой закругленной поверхности.

3.2.2. Приготовленные по п. 3.2.1 лепешки хранят в течение (24±2) ч с момента изготовления в ванне с гидравлическим затвором, а затем подвергают испытанию кипячением.

3.2.3. По истечении времени хранения по п. 3.2.2. две цементные лепешки вынимают из ванны, снимают с пластинок и помещают в бачок, с водой на решетку. Воду в бачке доводят до кипения, которое поддерживают в течение 3 ч, после чего лепешки в бачке охлаждают и производят их внешний осмотр немедленно после извлечения из воды.

3.2.4. Цемент соответствует требованиям стандарта в отношении равномерности изменения объема, если на лицевой стороне лепешек не обнаружено радиальных, доходящих до краев, трещин или сетки мелких трещин, видимых невооруженным глазом или в лупу, а также каких-либо искривлений и увеличения объема лепешек. Искривления обнаруживают при помощи линейки, прикладываемой к плоской поверхности лепешки, при этом обнаруживаемые искривления не должны превышать 2 мм на краю или в середине лепешки. Допускается в первые сутки после испытаний появление трещин усыхания, не доходящих до краев лепешек, при условии сохранения звонкого звука при постукиваний лепешек одна о другую. Образцы лепешек, выдержавших и не выдержавших испытание на равномерность изменения объема, приведены на черт. 8.

Лепешку из теста, приготовленную по п. 3.2.1 и хранимую по п. 3.2.2, вместо кипячения подвергают обработке в автоклаве по следующему режиму: подъем давления от атмосферного до 2,1 МПа -в течение 60-90 мин, выдержка при давлении 2,1 МПа -в течение 3 ч, снижение давления от 2,1 МПа от атмосферного -около 60 мин. После этого лепешку извлекают из автоклава, охлаждают до температуры помещения и немедленно ее осматривают.

Получение нефтяных битумов.

Нефтяные битумы получают на нефтеперерабатывающих заводах из различных нефтей отличающихся друг от друга химическим составом и свойствами.

Нефть на заводах подвергается фракционной перегонке с целью получения светлых продуктов (бензина, лигроина, керосина) смазочных масел и других видов нефтепродуктов. Нефтяные остатки после отбора более легких по массе фракций - гудрон, крекинг - в дальнейшем используют в качестве сырья для получения нефтяных битумов заданных свойств. В настоящее время нефтяные битумы получают при атмосферно-вакуумной перегонке нефти (остаточные битумы); окислением нефтяных остатков (окисленные битумы) и смешением остатков, образующихся при перегонке нефти (компаундированные битумы).

Остаточные битумы представляют собой продукты малой вязкости и обычно подвергаются окислению.

Окисленные битумы получают путем продувки воздухом нефтяных остатков (гудрона) на специальных окислительных установках до заданной вязкости. В результате взаимодействия кислорода воздуха с гудроном в процессе продувки идет реакция образования высокомолекулярных компонентов окисленного битума и повышение его вязкости. За последнее время освоен метод непрерывного окисления битума. Нефтяные остатки при температуре около -210°С поступают в реактор, где с помощью специальных аппаратов (диспергаторов) засасывается воздух и распределяется в окисляемом продукте. В данной технологии наряду с интенсификацией процесса окисления улучшается качество окисленного битума.

Смешанные (компаундированные) битумы получают в основном путем смешения битума деасфальтизации (остаточный продукт после обработки гудрона жидким пропаном) с масляными дистиллятами.

Нефтяные битумы, как твердые или вязкопластичные, так и жидкие, находят широкое применение в строительстве. Их используют для устройства дорожных покрытий, покрытий аэродромов, устройства плоских кровель, ирригационных каналов, производства гидроизоляционных и кровельных материалов в лакокрасочной и химической промышленности.

27. Определение пористости материала (общей, открытой).

Насыщение образца

Охлажденный и высушенныйобразец помещают в емкость для вакуумирования, вакуумируют до давления не выше2,5 КПа (25 мбар) в течение 15 мин.

Для проверки полногоудаления воздуха из открытых пор отсоединяют емкость от вакуумного насоса и спомощью манометра устанавливают, что давление не повышается из-за дегазацииобразца. После проверки емкость для вакуумирования подсоединяют к вакуумномунасосу и подают насыщающую жидкость так, чтобы через 3 мин образец был покрытслоем жидкости примерно на 20 мм. Затем насос отключают и выдерживают 30 миндля насыщения жидкостью открытых пор.

Допускается проводитьвакуумирование образцов в течение 5 мин при давлении, не превышающемпарциальное давление паров насыщающей жидкости, затем (после отключения насоса)соединить емкость с атмосферой и извлечь образцы из емкости.

Образцы с открытойпористостью менее 12 % выдерживают в жидкости не менее 4 ч, если такая операцияпредусмотрена в нормативной документации на продукцию.

Обработка результатов

8.1. Кажущуюся плотность r b в г/см 3 вычисляютпо формуле

8.2. Открытую пористость П а

(2)

8.3. Общую пористость П t , в процентах вычисляют по формуле

(3)

8.4. Закрытую пористость П f в процентах вычисляют поформуле

П f = П t - П а (4)

8.5. Водопоглощение W в процентах вычисляют поформуле

(5)

8.6. В уравнениях (1) - (5) использованы следующие обозначения:

m 1 -масса сухого образца, г;

m 2 - результат взвешивания образца, погруженного в жидкость, г;

m 3 - масса насыщенного жидкостью образца, г;

Плотность воды притемпературе 20 °С, г/см 3 ;

r - истинная плотностьматериала, г/см 3 ; определяется по ГОСТ 2211;

r l - плотность насыщающей жидкости при температуре испытаний в г/см 3 ;для дистиллированной воды

28. Минеральные вяжущие вещества. Классификация, применение. Воздушные вяжущие вещества.

Минеральные вяжущие вещества - это материалы, которые при смешивании с водой образуют пластично-вязкое тесто, способное со временем самопроизвольно затвердевать, переходя в камневидное состояние. После затвердевания вяжущее вещество скрепляет в одно целое, т.е. как бы связывает между собой, камни либо зерна сыпучих материалов - песка, гравия, щебня.

Минеральные вяжущие выпускают в виде тонких высокодисперсных порошков (цемента, гипсового вяжущего). Реже применяют вяжущие в виде высоковязких жидкостей (жидкого стекла, фосфатных вяжущих). Как правило, минеральные вяжущие переводят в рабочее состояние путем смешивания с водой. Этот процесс называют затворением вяжущего. Некоторые вяжущие, например магнезиальный цемент, затворяют водными растворами солей.

По химическому составу минеральные вяжущие вещества подразделяют на следующие основные группы: строительная известь; гипсовые вяжущие; цементы; смешанные вяжущие (известково-шлаковые, из-вестково-пуццолановые); магнезиальные вяжущие; жидкое (растворимое стекло).

В зависимости от условий твердения вяжущего, а также от области применения различают воздушные и гидравлические вяжущие вещества.

Воздушные вяжущие способны затвердевать и сохранять прочность длительное время только на воздухе. К этой группе относят воздушную известь, гипсовые вяжущие, магнезиальный цемент. При систематическом увлажнении затвердевшие воздушные вяжущие теряют прочность, поскольку они неводостойки. Поэтому эти вяжущие можно применять лишь в таких частях сооружений, которые не подвергаются действию
воды.

Основной характеристикой вяжущих веществ является прочность, по которой оценивают марку вяжущего.
Кроме прочности учитывают скорость твердения вяжущего, т.е. темп набора прочности. Различают два этапа твердения вяжущего - схватывание и собственно твердение. Момент, когда тесто вяжущего начинает загустевать и утрачивает пластичность, называют началом схватывания. Все технологические операции по приготовлению, транспортированию и укладке бетонной смеси и раствора производят до начала схватывания, пока масса еще не утратила пластичности. В этом важное практическое значение данного показателя.
Со временем вяжущее тесто окончательно загустевает и переходит в твердое камневидное тело. Период, характеризующий собственно твердение, у вяжущих веществ может быть различным. Наибольшей быстротой твердения отличаются гипсовые вяжущие: они твердеют за несколько часов. Цементы набирают марочную прочность через 28 сут. Известковые вяжущие относятся к медленнотвердеющим.
До начала схватывания смесь вяжущего вещества с водой называют тестом (например, цементное тесто); после его затвердевания образуется камень (например, цементный).

Применяются минеральные вяжущие вещества в смеси только с водой или с водой и заполнителями - песком, гравием, щебнем.

29. Пластифицированный портландцемент. Состав, свойства и области применения.

Пластифицированный портландцемент - гидравлическое вяжущее, получаемое совместным тонким измельчением портландцементпого клинкера и гидрофильной поверхностно-активной добавки при обычной дозировке гипса. В качестве поверхностно-активного вещества применяют концентраты сульфитно-дрожжевой бражки в количестве 0,15-0,25% массы цемента в пересчете на сухое вещество. По прочностным показателям пластифицированный портландцемент не отличается от обычного портландцемента (имеет марки 400, 500, 550 и 600). Главная его особенность заключается в повышении пластичности бетонной смеси.

В результате:

снижается трудоемкость при укладке бетонной смеси, ускоряется бетонирование и повышается качество укладки бетона в сооружениях;
уменьшается расход портландцемента в бетоне в результате меньшей дозировки цемента и воды (цементного теста) при сохранении заданной пластичности бетонной смеси;
повышается прочность и морозостойкость бетона за счет снижения водоцементного отношения при сохранении заданной пластичности бетонной смеси.

Пластифицированный портландцемент получают введением при помоле обыкновенного портландцемента пластифицирующих поверхностно-активных добавок. В качестве поверхностно-активных добавок применяют концентраты сульфитно-спиртовой бражки (СДБ), удовлетворяющей требованиям МРТУ 13-04-35-66.
Добавка вводится в сухом виде или в виде водного раствора в количестве 0,15-0,25% от массы цемента в пересчете на сухое вещество. Оптимальное содержание добавки для данного цемента устанавливается опытным путем и зависит от минералогического состава клинкера, тонкости помола цемента и содержания в нем гидравлических добавок.
Основные свойства пластифицированного портландцемента и требования, предъявляемые к ним стандартом, те же, что и у обыкновенного портландцемента, за исключением требования к его пластичности. Раствор из смеси пластифицированного портландцемента с нормальным песком состава 1: 3 при водоцементном отношении, равном 0,40, должен обладать такой пластичностью, при которой расплыв конуса из этого раствора после 30 встряхиваний составляет не менее 125 мм. Обыкновенный портландцемент при этих же условиях дает расплыв конуса 105-110 мм.
Пластифицированный портландцемент отличается от обыкновенного способностью придавать бетонным смесям повышенную подвижность (текучесть), что обеспечивает их более легкую укладку и уплотнение при формировании бетонных изделий. Так как подвижность бетонных смесей зависит в основном от содержания воды, то применение пластифицированного портландцемента позволяет уменьшить водосодержание смеси без изменения ее подвижности. Это в свою очередь позволяет сэкономить цемент, повысить прочность и морозостойкость бетона.

Рулонные материалы на основе битума. Исходные материалы, свойства и области применения в строительстве.

Это кровельный материал.

Рулонные материалы. Кровлю из рулонных материалов делают из нескольких слоёв, составляющих кровельный ковёр. В низ ковра укладывают подкладочные материалы (беспокровные), а верхний слой устраивают из покровных материалов, имеющих покровный слой из тугоплавкого битума и посыпку: крупнозернистую(К), мелкозернистую(М) или пылевидную(П). Допускается выпуск кровельного рубероида с чешуйчатой посыпкой (РКЧ).

Выпускают основные и безосновные рулонные материалы. Основные изготовляют путём обработки основы (кровельного картона, асбестовой бумаги, стеклоткани и др.) битумами, дегтями и их смесями. Безосновные получают в виде полотнищ определённой толщины, применяя прокатку смесей, составленных из органического вяжущего (чаще битума), наполнителя (минерального порошка или измельчённой резины) и добавок (антисептика, пластификатора).

Рулонные битумные материалы должны обладать устойчивостью к механическим нагрузкам (иметь определенные деформационно-прочностные, в том числе демпфирующие свойства) и разнообразным атмосферным воздействиям (не разрушаться под влиянием ультрафиолетовых лучей, кислорода, температуры, влаги и т.д.) При этом требования устойчивости материалов к разрушениям неодинаковы в широком интервале эксплуатационных температур. Совместить выполнение столь многочисленных и разнообразных требований в каком-либо битумном составе практически невозможно, поэтому рулонные битумные материалы (вследствие выполнения различных функций при эксплуатации в кровле) должны быть многослойными и к каждому из этих слоев следует предъявлять специальные требования. Отметим, что наплавляемые материалы тоже являются многослойными. Имея крайне низкий уровень индустриальной готовности, они в то же время полностью соответствуют принципу функционального назначения по количеству слоев: в них содержится защитный атмосферный слой минеральных гранул, армирующий слой основы с мягким пропиточным битумом и нижний слой приклеивающей мастики.

Из-за высокой хрупкости битумного слоя у наплавляемых рубероидов появляются трещины, поэтому их следует модифицировать полимерами. Для модификации битумов используются в основном полимеры с линейной углеродной (полиэтилен, полипропилен) или разветвленной цепью (полиизобутилен, сополимеры пропилена), а также полимеры, включающие ароматические кольца (дивинилстирольные каучуки).

Лучшим сырьем для кровельных битумов являются высокосмолистые, малопарафинистые нефти нафтенового или нафтеново-ароматического основания.

36.Определение активных СаО и MgO в извести.

Контрольное определение содержания активных СаО и MgO в вяжущем производят титрованием 1 н. раствором соляной кислоты. Рекомендуется навеска 7 г вяжущего для титрования. Длительность титрования смеси извести с тонкомолотым песком зависит от содержания примесей в последнем. Оптимальная продолжительность определения активных СаО и iVLgO в вяжущем до первого исчезновения окраски водного раствора извести с добавленным фенолфталеином составляет 20 мин для кварцевых и полевошпатных песков, 35-40 мин для песка с глинистыми примесями.

Морозостойкость строительных материалов - способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения и без значительного снижения прочности. Морозостойкость измеряется количеством циклов замораживания и оттаивания, проводимых в лабораторных условиях.

Стандартизированный метод оценки морозостойкости бетона характеризуется числом циклов замораживания и оттаивания образцов при нормированных условиях испытания без существенного снижения прочности. Этот метод предложен в 1886 г. Н.А. Белелюбским и позволяет оценить стойкость бетона при некотором условном экстремальном режиме его работы: полном водонасыщении и непрерывном циклическом замораживании при общей длительности одного цикла 4,5-6,5 ч. При основном стандартном способе испытаний замораживание производится при -15 - -20°С на воздухе, а оттаивание при +20°С в воде. Для ускорения испытаний температуру замораживания снижают до -40 - -60°С, насыщают образцы водным солевым раствором, уменьшают их размеры и сокращают длительность циклов.
Часто при испытании морозостойкости для определения фактического изменения прочности через заданное число циклов используют коэффициент морозостойкости Кмрз =Rмрз / Rк, где Rмрз - прочность бетона после принятого числа циклов испытаний; Rк - прочность контрольных образцов. Марка бетона по морозостойкости считается обеспеченной через требуемое число циклов, если Кмрз > 0,95.
Наряду с определением морозостойкости путем прямого испытания прочности бетона через определенное число циклов замораживания и оттаивания применяют неразрушающие методы: определение скорости ультразвуковых волн; измерение динамического модуля упругости, а также остаточных деформаций (относительного удлинения образцов после испытания).
Ультразвуковые испытания (Образец помещают в испытательную ванну, наполненную водой, и определяют время распространения в нем ультразвука поочередно по всем каналам измерения способом сквозного прозвучивания. Направление прозвучивания должно быть перпендикулярно к направлению укладки бетонной смеси) продолжаются до характерного перелома на кривой времени прохождения ультразвука от числа циклов (в логарифмическом масштабе). Этот перелом обусловлен образованием и развитием микротрещин в бетоне при его циклическом замораживании.
Динамический модуль упругости измеряют прозвучиванием образцов продольными (реже поперечными) ультразвуковыми волнами. Снижение динамического модуля упругости на 40-45% свидетельствует об интенсивном морозном разрушении бетона.
Дополнительным показателем стойкости бетона при морозном разрушении служат потери массы. Этот показатель более приемлем, когда деструкция бетона носит характер поверхностного шелушения, например, для дорожных бетонов. Потери массы при определении морозостойкости бетона ограничивают не более 5%.
С. В. Шестоперов для экспрессной оценки степени повреждения материалов при попеременном замораживании и оттаивании предложил 5-балльную шкалу для растворов и 10-бальную для бетонов. Качество бетона на 1ой подготовительной стадии разрушения оценивается от 10 баллов, когда образцы не имеют никаких изменений, до 7 баллов, когда начинается шелушение граней и ребер и образуются лунки при наличии неморозостойких зерен заполнителей. На второй завершающей стадии разрушения состояние образцов по мере разрушения может быть охарактеризовано последовательно в убывающем порядке от 6 до 1 балла. Предложено также балльную оценку состояния образцов производить по нескольким критериям в зависимости от степени их влияния на развитие деструктивных процессов.

47. Химический и минералогический состав портландцемента и его влияние на основные свойства .

Определение марки цемента.

Определение марки цемента испытанием на изгиб лепешек из цементного теста (способ проф. Б.Г. Скрамтаева). Этому опыту подвергают те цементные лепешки, которые прошли испытание на равномерность изменения объема. Рекомендуется испытывать 5 пропаренных цементных лепешек или лепешки в возрасте 28 суток. Испытания проводят с помощью приспособления, которое несложно изготовить в условиях обычной строительной площадки. Оно состоит из доски с прорезью 25x6 см и металлического хомута с крюком (рис. 1.11). Цементную лепешку кладут на края выреза в доске так, чтобы пролет лепешки составлял
6 см. На лепешку надевают хомут, к которому подвешивают ведро, нагружаемое обычно песком. Нагрузку увеличивают постепенно, до разрушения лепешки. Прочность лепешки на излом вычисляют по формуле:

R изл = 1,3Р/dh 2 ,

где R изл – прочность на излом, МПа; Р – масса груза с ведром и хомутом, кг; d – диаметр лепешки, см; h – толщина лепешки в середине, см.

Толщину и диаметр лепешки измеряют с точностью до 1 мм после испытания, что практически удобнее. По пяти результатам испытаний подсчитывают среднее значение; оно и является окончательным результатом. После этого марку цемента ориентировочно определяют по табл. 1.124.

Определение марки цемента испытанием на изгиб балочек из цементного теста. Изготовляют шесть балочек размером 2x2x13 см из цементного теста нормальной густоты. Метод изготовления следующий: в форму (желательно металлическую (рис. 1.12) укладывают цементное тесто, уплотняют его и штыкуют ножом 10 раз; после этого форму 20-30 раз встряхивают легкими ударами о край стола, поверхность теста заглаживают смоченным в воде ножом; в таком виде балочки выдерживают 20 ч во влажных опилках, после чего форму помещают в бачок над кипящей водой для пропаривания в течение 4 ч. После остывания в бачке до комнатной температуры форму вынимают, раскрывают и балочки испытывают.

Испытания проводят на простейшем устройстве, которое можно собрать в условиях любого строительства (рис. 1.13).

Расстояние между опорами (обрезки уголка) должно быть 10,7 см. При этом условии прочность балочек на изгиб будет равна 2Р, где Р – масса груза, приложенная посередине балочки и вызвавшая ее разрушение, кг. За результат испытания принимают среднюю величину из четырех наибольших. Полученная прочность на изгиб, умноженная на 4, соответствует примерной марке цемента.

Определение марки цемента по результатам испытаний пропаренных стандартных образцов (уточненный метод Б.Г. Скрамтаева, Г.И. Горчакова и Н.Д. Тагунцева). Стандартными считаются образцы-балочки размером 4x4x16 см, изготовленные из раствора состава 1:3 на стандартном (Вольском) песке с водоцементным отношением 0,4. Стандартный песок может быть заменен специально приготовленным естественным: для этого обычный песок просеивают и берут только фракцию, оставшуюся на сите с отверстиями 0,63 и прошедшую через сито с отверстиями 1,25 мм; кроме того, он должен быть промыт и прокален на огне. Смесь сначала тщательно перемешивают вручную без воды, затем добавляют воду и перемешивают в течение 5 мин стальной ложкой. После этого массу укладывают в форму (их выпускают стандартными), уплотняют сначала послойно стальным пестиком с тупым концом диаметром 10-16 мм, а потом постукиванием формы о край стола (метод предусматривает отсутствие стандартной виброплощадки для уплотнения). Избыток раствора срезают ножом, поверхность заглаживают.

Образцы в формах ставят под колпак, в котором для увлажнения находится сосуд с водой, и выдерживают в течение 24 ч. После этого балочки расформовывают и пропаривают в приспособлении (рис. 1.9) в следующем режиме: подъем температуры до 100°С – 2 ч, пропаривание при 100°С – 4 ч, остывание образцов – 2 ч. Испытания остывших образцов проводят на приспособлении, показанном на рис. 1.13. Прочность образцов на изгиб вычисляют по формуле:

где R изг – прочность на изгиб, МПа; – расстояние между опорами, равное 0,1 м; b, h – соответственно ширина и высота балки, м.

Чтобы установить марку цемента, полученную R изг умножают на переходной коэффициент, характеризующий отношение прочности на изгиб образцов в 28-суточном возрасте к прочности на изгиб пропаренных образцов. Он колеблется для различных цементов от 1,2 до 1,7. В среднем для портландцементов его можно принимать 1,4-1,5.

Деформативные свойства

Основные понятия, термины, определения

Деформативные свойства материалов проявляются при воздействии на них механических и термических нагрузок, в результате которых в материале возникают различного рода деформации , напряженное состояние и, наконец, наступает разрушение .

Деформация - это нарушение взаимного расположения множества частиц материальной среды, которое приводит к изменению формы и размеров тела и вызывает изменение сил взаимодействия между частицами, т.е. возникновение напряжений. Заметим, что чаще деформации вызывают напряжения, и поэтому, как правило, строят графики зависимости напряжений от деформаций, а не наоборот.

Простейшими элементами деформации являются относительное удлинение и сдвиг.

Относительное удлинениё «ε» стержня или материального волокна среды длины « есть отношение изменения (l - l o ) к первоначальной длине: ε = (l-l o)/l o .

Сдвигом называется изменение угла у между элементарными волокнами, исходящими из одной точки и образующими прямой угол до деформации (см. рис. 5.1).

В твердых телах деформация называется упругой , если она исчезает после снятия нагрузки, и пластической, если она после снятия нагрузки не исчезает; если она исчезает не полностью, то называется упругопластической, если она изменяется во времени и обратима, то называется вязкоупругой .

Разрушение - это ослабление взаимосвязи между частицами при нарушении сплошности структуры.

Различают хрупкое , т.е. мгновенное (без деформации) и пластическое (с деформацией) разрушение твердого тела.

Таким образом, к этой группе свойств можно отнести упругость, пластичность, хрупкость, вязкость, прочность и твердость.

Упругость

Упругость - свойство изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внешних воздействий.

Упругость тел обусловлена силами взаимодействия атомов, из которых они построены. В твердых телах при температуре абсолютного нуля и отсутствии внешних воздействий атомы занимают равновесное положение, в котором сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенциальная энергия атома минимальна.

Константы упругости

Количественно упругость характеризуется константами, свойственными каждому материалу. При этом необходимо учитывать, что большинство свойств, кроме плотности и теплоемкости, связано с анизотропией структуры. Упругость является ярко выраженным анизотропным свойством. Поэтому следует различать упругость кристаллов и анизотпропных материалов и упругость изотропных тел.

Поликристаллические тела и материалы в целом изотропны, анизотропия их свойств проявляется только в результате формования или обработки, например прессования, штампования, прокатки, уплотнения и т.п. Таким образом, формируется анизотропия свойств керамической плитки, черепицы, стального листа и т.д. В дальнейшем рассматривается упругость только изотропных свойств, для которых не применимы представления об ориентированных кристаллографических осях и пр.

Лекция 20-21

Полимеры. Получение полимеров. Реакции полимеризации и поликонденсации. Классификация полимеров. Виды полимеров, используемых в технике.

Полимеры – высокомолекулярные соединения с регулярно чередующимся большим числом одинаковых или неодинаковых атомных группировок, соединенных в цепи химическими связями; они могут иметь боковые ответвления или представлять собой пространственные сетки. Молекулы полимеров, называемые также макромолекулами. Вследствие большой молекулярной массы макромолекул полимеры приобретают некоторые специфические свойства. По­этому они выделены в особую группу химических соединений.

В зависимости от состава основной цепи полимеры подразделяются на органические (―С―С ―), неорганические (―Si―Si ―), элементорганические (―С―Ме―С ―).

Способность химических соединений к образованию полимеров определяется функциональностью их молекул . Функциональность характеризует число функциональных групп в молекуле:

где М – молекулярная масса химического соединения;

– эквивалентная молярная масса;

М ФГ – молярная масса функциональной группы;

С ФГ – концентрация функциональных групп (в % по массе).

Мы будем рассматривать органические синтетические полимеры.

Примеры функциональных групп:

гидоксил; карбоксил; аминогруппа аминогруппа сульфогруппа карбонил первичная вторичная

Функциональность вещества может определяться также наличием в его молекуле двойных или тройных связей или наличием подвижных атомов водорода.

Получение полимеров

Основные способы синтеза высокомолекулярных соединений:

1. Полимеризация;

2. Поликонденсация;

ПОЛИМЕРИЗАЦИЯ цепной процесс. Это синтез полимера путем последовательного присоединения молекул низкомолекулярного вещества (мономера) к активному центру, находящемуся на конце растущей цепи. В реакцию полимеризации вступают соединения, содержащие кратные связи (С≡С , С=С , С=О , С≡N и др.), либо способные раскрываться циклические группировки (окисление олефинов, лактама и др.).

, , .

В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием макромолекул, например:

nСН 2 =СН 2 (-СН 2 -СН 2 -) n

этилен полиэтилен


стирол полистирол "

В зависимости от вида мономеров, участвующих в полимеризации, различают гомополимеризацию (один вид мономера) и сополимеризацию (два и более вида мономеров).

Полимеризация - самопроизвольный экзотермический процесс ( <0), так как разрыв двойных связей или циклов с образованием ординарных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов и т. д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией. В зави­симости от характера активных частиц различают радикальную и ионную полимеризации.



При радикальной полимеризации процесс ини­циируется свободными радикалами. Реакция проходит через несколько стадий: а) инициирование; б) рост цепи; в) передача или обрыв цепи.

а) Инициирование - образование активных центров - ради­калов и макрорадикалов - происходит в результате теплового, фотохимического, химического, радиационного или других видов воздействий. Чаще всего инициаторами полимеризации служат пероксиды, азосоединения (имеющие функциональную группу -N=N-) и другие соединения с ослабленными связями. Перво­начально образуются радикалы, например:

(С 6 Н 5 СОО) 2 2C 6 H 5 COO ● (R ●)

пероксид бензоила.

Затем образуются макрорадикалы, например при полимеризации хлорвинила:

R ● + CH 2 =CHCI RCH 2 -СНСl ●

RCH 2 -CHCl ● + CH 2 =CHCI RCH 2 -CHC1-СН 2 -СНСl ● и т.д.

б) Рост цепи происходит за счет присоединения к радикалам
образующихся мономеров с получением новых радикалов.

в) Передача цепи заключается в переносе активного центра
на другую молекулу (мономер, полимер, молекулы раствори
теля):

R-(-СН 2 -СНС1-) n -СН 2 -СНС ● + СН 2 =СНС1

R- (-СН 2 -СНС1-) n -СН 2 -СН 2 С1 + СН=СНСl ●

В результате рост цепи прекращается, а молекула-передатчик, в данном случае молекула мономера, инициирует новую реакционную цепь. Если передатчиком служит полимер, то может произойти разветвление цепи.

В стадии обрыва цепи происходит взаимодействие радикалов с образованием валентно-насыщенных молекул:

R-(-CH 2 -CHC1-) 2 -CH 2 -CHCl ● + R-(-СН 2 -СНС1-) n -СН 2 -СНСl

R-(-СН 2 -CHCI-) n -СН 2 -СНС1-CH 2 -CHCl-(-СН 2 -CHCI-) n -R

Обрыв цепи может также произойти при образовании малоактивных радикалов, которые не способны инициировать реакцию. Такие вещества называют ингибиторами . Таким образом, регулирование длины и соответственно молекулярной массы мак­ромолекул можно осуществлять с помощью инициаторов, ингибиторов и других веществ. Тем не менее передача и обрыв цепи могут происходить на различных этапах роста цепи, поэтому макромолекулы имеют различную молекулярную массу, т. е. полидисперсны. Полидисперсность является отличительной особенностью полимеров.

Радикальная полимеризация служит промышленным способом синтеза многих важных полимеров, таких, как поливинилхлорид [-СН-СНС1-] n , поливинилацетат [-СН 2 -СН(ОСОСНз)-] п ,полистирол [-СН 2 -СH(С 6 Н 6)-] n ,полиакрилат, [-СН2-C(CH 3)(COOR)-] n , полиэтилен [-СН 2 -СН 2 -] п,полидиены [-СН 2 -C(R)=CH-СН 2 -] n и различных сополимеров.

Ионная полимеризация также проходит через ста­дию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соот­ветственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроно-акцепторные соединения, в том числе протонные кислоты, например H 2 SO 4 и НС1; неорганические апротонные кислоты (SnCl 4 , TiCl 4 , AlCl 3 и др.), металлоорганические соединения А1(С 2 Н 5) 3 и др. В качестве инициаторов анионной полимеризации используются электронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации.

Рост цепи можно записать уравнениями реакции при катионной полимеризации

и анионной полимеризации.

Методом полимеризации получают 3/4 всего объема выпускаемых полимеров. Полимеризацию проводят в массе, растворе, эмульсии, суспензии или газовой фазе.

Полимеризация в массе (в блоке) - это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При та­ком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя.

Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностно-активные вещества. Достоинство способа - легкость отвода теплоты, возможность получения полимеров с большой молекуляр­ной массой и высокая скорость реакции, недостаток - необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полисти­рола, поливинилхлорида, поливинилацетата, полиметилакрилата и др.

При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспергированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от 10 ~6 до 10 ~3 м. Недостаток метода - необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов.

При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты - в жидком или твердом состоянии. Метод применяется для получения полипропилена и других полимеров.

Поликонденсация. Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождаю­щаяся образованием низкомолекулярных продуктов (Н 2 О, NНз, НС1, СН 3 О и др.), называется поликонденсацией. Поликонденсация бифункциональных соединений получила название линейной, например,

2NH 2 - (СН 2) 5 -СООН

аминокапроновая кислота

NH 2 -(СН 2) 5 -СО-NH-(СН 2) 5 -СООН + Н 2 О

NH 2 -(CH 2) 5 -CO-NH-(СН 2) 5 -СООН-NH 2 - (СН 2) 5 -СООН NH 2 - (CH 2) 5 -CO-NH- (СН 2) 6 -СО-NH- (СН 2) 5 -СООН +Н 2 О и т.д..

Конечным продуктом будет поли- -капроамид (капрон)

[-СО-NH-(CH 2) 5 -] n .

Поликонденсация соединений с тремя или более функциональ­ными группами называется трехмерной. Примером трехмерной поликонденсации служит взаимодействие мочевины и формаль­дегида:

NH 2 -CO-NH 2 + СН 2 О NH 2 -CO-NH-СН 2 ОН

NH 2 -CO-NH-СН 2 ОН + СН 2 О СН 2 ОН-NH-CO-NH-СН 2 ОН

2СН 2 ОН-NH-CO-NH-СН 2 ОН

Н 2 О + СН 2 ОН-NH-CO-NH-СН 2 -О-СН 2 -NH-CO-NH-СН 2 ОН

На первом этапе синтезируется олигомер линейной структуры:

[-СН 2 -NH-CO-NH-СН 2 -О-] n

На втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением СН 2 О и возникновением сетчатой структуры

Такой полимер невозможно превратить в исходное состоя­ние, он не обладает термопластичными свойствами и называется термореактивным полимером.

Так как в процессе поликонденсации наряду с высокомоле­кулярными образуются низкомолекулярные продукты, то эле­ментные составы полимеров и исходных веществ не совпадают. Этим поликонденсация отличается от полимеризации. Поликон­денсация протекает по ступенчатому механизму, при этом про­межуточные продукты являются стабильными, т. е. поликонден­сация может остановиться на любой стадии. Образующиеся низкомолекулярные продукты реакции (Н 2 0, NНз, НС1, СН 2 О и др.) могут взаимодействовать с промежуточными продуктами поликонденсации, вызывая их расщепление (гидролиз, аминолиз, ацидолиз и др.), например

NH-СО-(СН 2) 5 -NH-СО-(СН 2) 5 - + Н 2 О

- NH-CO- (CH 2) 5 -NH 2 -НО-СО- (СН 2) 5

Поэтому низкомолекулярные продукты приходится удалять из реакционной среды.

Монофункциональные соединения, присутствующие в реак­ционной среде, взаимодействуют с промежуточными продуктами, образуя нереакционноспособные соединения. Это приводит к об­рыву цепи, поэтому исходные мономеры должны быть очищены от монофункциональных соединений. Монофункциональные со­единения могут образоваться в ходе реакции из-за термической или окислительной деструкции промежуточных соединений. Это приводит к остановке реакции поликонденсации и уменьшению молекулярной массы полимера.

Поликонденсацию проводят либо в расплаве, либо в растворе, либо на межфазной границе.

Поликонденсацию в расплаве ведут без растворителей, нагре­вая мономеры при температуре на 10-20°С выше температуры плавления (размягчения) полимеров (обычно 200-400°С). Про­цесс начинается в среде инертного газа и заканчивается в ва­кууме.

При поликонденсации в растворе используют растворитель, который также может служить абсорбентом низкомолекулярного продукта.

Межфазная поликонденсация происходит на границе раздела фаз газ - раствор или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой.

Методом поликонденсации получают примерно четвер­тую часть выпускаемых полимеров, например поликапроамид (капрон), полигексаметиленадипинамид (найлон) [-NH(CH 2) 6 NHCO(CH 2) 4 CO-] n , полиэфиры (полиэтилентерефталат [-(-ОС)С 6 Н 4 (СО)ОСН 2 СН 2 -] n), полиуретаны [-OROCONHR"NHCO-] n , полисилоксаны [-SiR 2 -О-] n , полиацетали [-OROCHR"-] n , мочевиноформальдегидные смолы, фенолоформальдегидные смолы

Химические свойства полимеров зависят от их состава, моле­кулярной массы и структуры. Полимерам свойственны реакции соединения макромолекул поперечными связями, взаимодействия функциональных групп друг с другом и низкомолекулярными веществами и деструкции. Наличие у макромолекул двойных связей и функциональных групп обусловливает повышение реак­ционной способности полимеров (табл.1, 2) .

Полимеры могут подвергаться деструкции, т. е. разрушению под действием кислорода, света, теплоты и радиации. Нередко деструкция вызывается одновременным воздействием нескольких факторов. В результате деструкции уменьшается молекулярная масса макромолекул, изменяются химические и физические свой­ства полимеров, в конце концов, полимеры становятся непригод­ными для дальнейшего применения. Процесс ухудшения свойств полимеров во времени в результате деструкции макромолекул называют старением полимеров. Для замедления деструкции в состав полимеров вводят стабилизаторы, чаще всего антиоксиданты, т. е. ингибиторы реакции окисления (фосфиты, фенолы, ароматические амины). Стабилизация обычно обусловлена обры­вом цепи при взаимодействии антиоксидантов со свободными радикалами, образующимися в процессе реакции окисления.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ (ВМС)

Высокомолекулярные соединения или полимеры - это химические вещества с большой молекулярной массой, молекулы которых состоят из многократно повторяющихся элементарных звеньев. Такие молекулы называются макромолекулами. Элементарные звенья получаются при взаимодействии одинаковых или разных молекул, называемых мономерами. Число элементарных звеньев в макромолекуле называется степенью полимеризации (n) полимера. Молекулярный вес полимера зависит от степени полимеризации.

Классификация полимеров

Полимеры с низкой степенью полимеризации называются олигомеры, а с высокой степенью полимеризации называются – полимеры. Различают органические, неорганические и элементоорганические полимеры. Полимеры классифицируются:

1. По происхождению:

· природные

· синтетические

К природным относятся крахмал, целлюлоза, построенные из звеньев моносахаридов (клетчатка С 6 Н 10 О 5); белки, построенные из звеньев α – аминокислот [Н 2 N-RCH-COOH]; натуральный каучук (CH 2 -C(CH 3)= CH-CH 2 -)n.

К синтетическим относятся полимеры , полученные из мономеров искусственным путем (полиэтилен, синтетический каучук, полистирол и т.д.).

2. По строению:

· линейные

· разветвленные



· сетчатые

Элементоорганические полимеры содержат в основной цепи других элементов.

Например:


O – Si – O – Si –

силиконы

В составе молекул неорганических полимеров атомов углерода нет.

По отношению к нагреванию различают термопластичные и термореактивные полимеры. Термопластичные при нагревании переходят в высокопластичное состояние, а при охлаждении снова затвердевают. Термореактивные при нагревании разрушаются необратимо.

В зависимости от способов получения полимеры делят на на полимеризационные, при образовании которых не происходит выделение побочных продуктов и на поликонденсационные , образование которых сопровождается выделением низкомолекулярных соединений.

Методы получения полимеров

Полимеры получают методами полимеризации и поликонденсации.

Полимеризация – это образование полимеров путем последовательного присоединения мономера за счет разрыва двойных или тройных связей без выделения побочных продуктов. Полимеризация – самопроизвольный экзотермический процесс, т.к. разрыв кратных связей ведет к уменьшению энергии системы.

Процесс полимеризации протекает в несколько стадий: инициирование, рост цепи, и обрыв цепи .

Если в стадии инициирования участвуют радикалы это радикальная полимеризация, если участвуют анионы - анионная полимеризация , если катионы – катионная полимеризация .

К полимеризационным полимерам относят, например, полистирол (-СН 2 -СН-)n, поливинилхлорид (-СН-СН-)n,

поливинилацетат (-СН 2 -СН(OCOCH 3)-)n, полиэтилен (-СН 2 -СН 2 -).

Поликонденсация - это реакция синтеза полимера из соединений, имеющих две или более функциональные группы сопровождающаяся образованием низкомолекулярных соединений (H 2 O, NH 3 , HCl и др.).

Например: поликонденсация фенола (C 6 H 5 OH) с формальдегидом (СH 2 =O) дает фенолформальдегидную смолу:

ОН ОН ОН ОН

nC 6 H 4 -H + CH 2 =O + nH-H 4 C 6 → (-С 6 H 4 -CH 2 -C 6 H 4 -)n + nH 2 O

К поликонденсационным полимерам относятся мочеформальдегидная смола.

[-CH 2 -NH-CO-NH-CH 2 -O]n

Капрон является продуктом конденсации аминокапроновой кислоты содержащей цепь из 6 атомов углерода:

(-NH – (CH 2) 5 -CO – NH- (CH 2) 5 - CO-)n

9.3 Физико – химические свойства полимеров

Большинство полимеров находятся в аморфном состоянии. Лишь небольшая часть имеет кристаллическую структуру. Кристаллические полимеры состоят из кристаллов, между которыми находятся участки с неупорядоченной структурой (аморфные области). Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т.е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры – температурой плавления.

Аморфные полимеры могут находиться стеклообразном, высокопластичном и вязкотекучем состоянии. При низкой температуре полимер находится в стеклообразном состоянии, в котором полимер ведет себя как упругое твердое тело. При повышении температуры полимер переходит в высокоэластическое состояние , свойственное только высокомолекулярным соединениям. Высокоэластическое состояние полимеров проявляется в интервале от температуры стеклования до температуры текучести. Если температурный интервал достаточно широк и захватывает обычные температуры, то такие полимеры называют эластиками или эластомерами, или каучуками . Полимеры с узким интервалом температур, смещенным в область повышенных температур, называют пластиками или пластомерами . При обычных температурах пластики находятся стеклообразном состоянии. При температуре выше температуры текучести полимер переходит в вязкотекучее состояние. Повышение температуры выше Тр ведет к деструкции - разрушению полимера. Вещество в вязкотекучем состоянии под действием напряжений сдвига течет как вязкая жидкость, причем деформация полимера является необратимой. К необратимым деформациям приводят воздействие оксидантов, ультрафиолетовое излучение, механические нагрузки.

9.4 Материалы, получаемые на основе полимеров

На основе полимеров получают волокна, пленки, лаки, клеи, резины, пластмассы и композиционные материалы (композиты).

Полимерные волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относят полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями или методом нанесения растворов полимеров на движущуюся ленту или методом каландрования полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Лаки – растворы пленкообразующих веществ в органических растворителях. Кроме полимеров лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для изоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи - композиции, способные соединять различные материалы вследствие образования связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др.

Пластмассы - это материалы, содержащие полимер, который при формировании изделия находятся в вязкотекучем состоянии, а при его эксплуатации - в стеклообразном.

Кроме полимеров в состав пластмасс могут входить пластификаторы, стабилизаторы, красители и наполнители. Пластификаторы, например диоктилдфталат, дибутилсерацинат, хлорированный парафин, снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико – механические свойства полимеров. В качестве наполнителей применяют порошки (графит, мел, сажа, металл и т.д.), бумагу, ткань. Особую группу пластмасс составляют композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают механической прочностью (прочность при разрыве 1300-1700 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью.

Ступенчатый синтез (поликонденсация и ступенчатая полимеризация) протекает по концевым функциональным группам мономеров, растущая цепь после каждого акта присоединения остается устойчивым соединением, процесс образования полимера протекает ступенями с низкой скоростью. При этом ММ растет постепенно, а молекулярно-массовое распределение изменяется непрерывно (рис.10). Полимеры с узким распределением по молекулярным массам образуются на начальных стадиях реакции, а с ростом конверсии мономеров оно становится шире. Поэтому для завершения роста цепи требуется больше времени, чем при цепных процессах.

Рис.10. Зависимость степени полимеризации п (а)

и молекулярно-массового распределения (б) от глубины превращения р функциональных групп: Мх - молекулярная масса фракции; Wх - массовая доля фракции.

Поликонденсацией называется процесс образования полимеров из би- или полифункциональных мономеров с выделением побочных низкомолекулярных продуктов (вода, спирты и др.), поэтому элементный состав их звеньев не соответствует составу мономеров:

п(А-R-A) + п(B-R1-B) A-[-R-R1-]n-B + (2n1)AB,

где A-R-A и B-R1-B исходные мономеры; A и B функциональные группы; AB-побочное низкомолекулярное соединение. Сначала образуются димеры, затем тримеры, тетрамеры и далее олигомеры, реагирующие друг с другом до полимера, который образуется на стадии высокой завершенности реакции (более 98%). Выход и ММ полимера зависят от времени реакции. Благодаря устойчивости молекул олигомеры могут быть выделены и использованы в дальнейших реакциях конденсации друг с другом или с другими мономерами для синтеза новых полимеров. Реакции однородных молекул с разными или с одинаковыми функциональными группами называют гомополиконденсацией:

nH2N(CH2)6COOH [-NH(CH2)6CO-]n + (n-1)Н2O,

nНО-(СН2)x-СO-ОН Н[-О-(СН2)x-СO-]nОН + (n-1)Н2О.

nНО(СН2)2ОН [-CH2-O-]n + (n-1)Н2O.

В гетерополиконденсации участвуют разнородные молекулы с разными функциональными группами, например при синтезе полиамидов:

nH2N(CH2)6NH2+nНООС(СН2)4СООН

H[-NH(CH2)6NHCO(CH2)4CO-]n-OH+(2n-1)Н2O.

Процесс получения высокомолекулярных соединений, в котором участвуют два или большее число мономеров, каждый из которых способен образовывать собственный полимер, называют сополиконденсацией:

2nH2N(CH2)6NH2+nНООС(СН2)4СООН+nНООС(СН2)8СООН

[-NH(CH2)6NHCO(CH2)4CONH(CH2)6NHCO(CH2)8CO-]n+4nН2O.

Бифункциональные мономеры подразделяются на три основных класса:

· с различными функциональными группами, взаимодействующие друг с другом: аминокислоты (H2N-R-СООН), оксикислоты (НО-R-СООН) и др., для поликонденсации можно использовать один мономер этого класса;

· с одинаковыми функциональными группами, не взаимодействующие друг с другом: диамины (H2N-R-NH2), дикарбоновые кислоты их производные, поэтому для поликонденсации необходимы два мономера;

· мономеры с одинаковыми функциональными группами, способные взаимодействовать друг с другом, например гликоли (НО-R-ОН); в этом случае синтез проводят, используя один мономер с одинаковыми функциональными группами. В качестве примера может служить реакция синтеза простых эфиров из гликоля. Бифункциональные мономеры образуют линейные макромолекулы (линейная поликонденсация), а мономеры с тремя и большим числом функциональных групп (например, фенолформальдегидные смолы) образуют разветвленные и сетчатые структуры.

Ступенчатая или миграционная полимеризация (полиприсоединение) по закономерностям процесса сходна с поликонденсацией. Молекулы мономера присоединяются к растущей цепи, являющейся устойчивой частицей, без выделения низкомолекулярных продуктов путем перемещения (миграции) водорода. Полиприсоединение аналогично полимеризации по соответствию составов звеньев и мономеров, но состоит из отдельных независимых стадий и подчиняется основным закономерностям равновесной поликонденсации. В реакции участвуют два би- или полифункциональных мономера, один из которых содержит подвижный атом водорода (амины, фенолы, спирты, кислоты), а второй группы, способные присоединять его. По ступенчатому механизму полимеризации идут реакции диэпоксидов с дикарбоновыми кислотами, полиаминами, бисфенолами и полиспиртами. Эпихлоргидрин с дигидроксидифенилпропаном в щелочной среде образуют разнообразные продукты от вязкожидких до твердой консистенции:


Наряду с концевыми эпоксидными группами, в макромолекуле имеются вторичные гидроксильные группы, также способные вступать в дальнейшие реакции с бифункциональными соединениями с образованием трехмерных полимеров. Для отверждения эпоксиолигомеров используют, кроме перечисленных выше, ангидриды дикарбоновых кислот, диизоцианаты, и различные олигомеры, содержащие функциональные группы (полиамиды, полисульфиды), которые взаимодействуют с вторичными гидроксилами. Реагируя с концевыми эпоксидными группами, они увеличивают длину цепей и прочность полимеров.

При взаимодействии диаминов с концевыми эпоксидными группами возникают вторичные гидроксильные группы, способные также реагировать с диизоцианатами или диангидридами с образованием «сшитых» структур:

2~CH-CH2 + H2N-R-NH2 ~CH-CH2-HN-R-NH-CH2-CH~ .

При взаимодействии дикарбоновых кислот с концевыми эпоксидными группами получаются олигомеры, содержащие и сложноэфирные группы. Аналогичен синтез полиуретанов из изоцианатов и гликолей:


Для получения полимера необходимо, чтобы исходные мономеры содержали не менее двух функциональных групп. Если заменить гликоль многоатомным спиртом (глицерин, пентаэритрит и др.) или диизоцианат - триизоцианатом, то получаются пространственно сшитые полимеры, подобные продуктам реакции трехмерной поликонденсации. Ароматические изоцианаты и спирты жирного ряда проявляют более высокую реакционную способность, чем алифатические изоцианаты и бисфенолы. ММ полиуретанов повышается с увеличением продолжительности реакции полиприсоединения. Существенно влияют на ММ соотношение диизоцианата и гликоля и температура синтеза.

Полимеризация с раскрытием циклов мономерных молекул (оксиды этилена и пропилена, триоксан, е-капролактам, циклопентен) также часто идет как ступенчатая реакция. Капролактам активируется водой, кислотой или основанием, которые присоединяются только к первой молекуле мономера, а далее реализуется механизм миграционной полимеризации:


Ступенчатый синтез полимеров включает равновесные (обратимые) и неравновесные (необратимые) процессы. Особенность равновесных процессов, например синтез полиамидов при нагревании дикарбоновых кислот с диаминами, - протекание обратных реакций с низкомолекулярным продуктом, приводящих к распаду полимерных цепей. Выделяющийся низкомолекулярный продукт (вода из диамина) может реагировать с амидными группами, и в результате гидролиза образуются исходные структуры или выделяются из макромолекул низкомолекулярные фрагменты. Синтез фенолформальдегидных смол сетчатого строения является примером неравновесной реакции. Выделяющиеся вода и формальдегид не могут вновь реагировать с простыми эфирными связями или метиленовыми группами между фенольными ядрами соответственно, и равновесие реакции практически полностью сдвинуто в сторону образования сетчатого полимера. Кроме того, сама сетчатая структура полимера способствует сдвигу реакции вправо, так как система становится нерастворимой и неплавкой. Поэтому ее функциональные группы даже в тех случаях, когда они могут реагировать с низкомолекулярными компонентами, недоступны для них, и обратная реакция практически не протекает.

Низкомолекулярный продукт линейной поликонденсации дигалогенугле-водородов и полисульфида натрия, не способный к реакции с функциональ-ными группами в макромолекулах полисульфидного эластомера, является также причиной неравновесности реакции, даже если система не теряет своей растворимости и плавкости: nCl-R-Cl+nNa2Sx-(-R-Sx-)n-+2nNaCl. Выделение низкомолекулярного компонента в газообразном состоянии на границе раздела фаз мономеров, не смешивающихся друг с другом, также обеспечивает неравновесность реакции. При синтезе полиамидов из дихлорангидридов кислот и диаминов реакция образования полимера также проходит в узкой области - на границе раздела фаз двух несмешивающихся растворов мономеров. Образующийся в виде тонкой пленки полиамид можно непрерывно удалять механическим путем, что позволяет провести реакцию практически в неравновесных условиях до полного исчерпания мономеров.

Обратимые и необратимые реакции синтеза полимеров по ступенчатому механизму количественно оценивают константой равновесия - отношением констант скоростей прямой и обратной реакций: Кр=Кпрям/Кобратн. Считают реакцию синтеза полимера равновесной при Кр не более 102 и неравновесной при Кр более 103. При промежуточных значениях Кр равновесность оценивают по условиям проведения реакции: для обратимых реакций - малые скорости и большая энергия активации (80-170 кДж/моль), а необратимых - высокие скорости и малая энергия активации (8-42 кДж/моль).

По закономерностям протекания ступенчатые реакции существенно отличаются от цепных реакций. Два фактора определяют размер и структуру макромолекул полимера: стехиометрия, если число компонентов больше одного, и степень завершенности реакции по расходу функциональных групп реагирующих компонентов. Если функциональные группы содержатся в исходной композиции в эквимолярных соотношениях, то ступенчатые реакции их друг с другом продолжаются до полного исчерпания, а на концах макромолекул всегда присутствуют свободные функциональные группы. Если в системе имеется избыток функциональных групп одной природы, то функциональные группы противоположной природы быстро израсходуются в реакциях. Избыточные концевые функциональные группы одной природы не могут реагировать друг с другом, и рост макромолекул прекратится. Чем больше избыток одних групп по отношению к другим, тем раньше прекратится рост макромолекул и меньше будет значение средней ММ конечного продукта. Таким образом, избыток функциональных групп одного из мономеров играет роль стоппера реакции образования полимера и прерывает эту реакцию на стадии низкомолекулярных продуктов или олигомеров. Основные отличия ступенчатых процессов синтеза от цепных радикальных и ионных реакций:

· постепенное увеличение ММ во времени, а в цепных реакциях - быстрое образование макромолекул, размер которых мало изменяется во времени;

· исходные мономеры быстро расходуются на низкомолекулярные и олигомерные продукты, реагирующие друг с другом с образованием полимера, а в цепных реакциях - постепенно расходуются и присутствуют на любой стадии вплоть до полной конверсии;

· промежуточные продукты реакции - устойчивые молекулы, в отличие от неустойчивых свободных радикалов или ионов с малым временем жизни;

· высокомолекулярные продукты присутствуют в реакционной системе в ощутимых количествах лишь при высоких степенях превращения функциональных групп, т.е. при большом времени реакции, а в цепных реакциях - присутствуют при любой конверсии мономеров;

· исходные, промежуточные и конечные продукты количественно определяют на любой стадии реакции, так как они устойчивы, и их размеры непрерывно изменяются, а в цепных процессах промежуточные продукты отсутствуют, и на любой стадии реакции присутствуют только исходные и конечные продукты.

Из изложенного следует, что по целому ряду показателей ступенчатые процессы уступают цепным реакциям синтеза полимеров. К этому надо добавить, что исходные мономеры для цепных процессов в основном более доступны и дешевы, чем мономеры с функциональными группами для ступенчатого синтеза. По этим причинам в производстве многотоннажных полимеров общего назначения больше применяют цепные процессы синтеза. Однако природа мономеров, сырьевые источники их получения для обоих видов процессов существенно различаются. Ряд важнейших промышленных полимеров (полиамиды, полиуретаны, различные полиэфиры, включая полиарилены и политиоэфиры, а также фенолоформальдегидные и другие смолы) можно получить только в результате ступенчатых процессов синтеза. Выбор этих процессов определяется не только доступностью и стоимостью сырья, но и теми требованиями, которые предъявляет техника к свойствам полимеров, а также возможностями их удовлетворения за счет структуры соответствующих полимеров.

Полимеры - высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называемые также макромолекулами, состоят из большого числа повторяющихся звеньев. Вследствие большой молекулярной массы макромолекул полимеры приобретают некоторые специфические свойства. Поэтому они выделены в особую группу химических соединений.

Отдельную группу также составляют олигомеры, которые по значению молекулярной массы занимают промежуточное положение между низкомолекулярными и высокомолекулярными соединениями.

Различают неорганические, органические и элементоорганические полимеры. Органические полимеры в свою очередь подразделяются на природные и синтетические. В настоящей главе рассматриваются в основном органические синтетические полимеры.

§ XIII.1. МЕТОДЫ ПОЛУЧЕНИЯ ПОЛИМЕРОВ

Полимеры получают методами полимеризации или поликонденсации.

Полимеризация

Полимеризация - это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями: либо соединения с циклическими группировками, способными раскрываться, например:

В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием макромолекул, например:

По числу участвующих мономеров различают гомополимеризацию (один вид мономера) и сополимеризацию (два и более видов мономеров). Полимеризация - самопроизвольный экзотермический процесс так как разрыв двойных связей или циклов с образованием ординарных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов и т. д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией. В зависимости от характера активных частиц различают радикальную и ионную полимеризации.

При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий: а) инициирование; б) рост цепи; в) передача или обрыв цепи.

а) Инициирование - образование активных центров - радикалов и макрорадикалов - происходит в результате теплового, фотохимического, химического, радиационного или других видов воздействий. Чаще всего инициаторами полимеризации служат пероксиды, азосоединения (имеющие функциональную группу и другие соединения с ослабленными связями. Первоначально образуются радикалы, например:

Затем образуются макрорадикалы, например при полимеризации хлорвинила:

б) Рост цепи происходит за счет присоединения к радикалам образующихся мономеров с получением новых радикалов.

в) Передача цепи заключается в переносе активного центра на другую молекулу (мономер, полимер, молекулы растворителя):

В результате рост цепи прекращается, а молекул а-передатчик, в данном случае молекула мономера, инициирует новую реакционную цепь. Если передатчиком служит полимер, то может произойти разветвление цепи.

В стадии обрыва цепи происходит взаимодействие радикалов с образованием валентнонасыщенных молекул:

Обрыв цепи может также произойти при образовании малоактивных радикалов, которые не способны инициировать реакцию. Такие вещества называют ингибиторами. Таким образом, регулирование длины и соответственно молекулярной массы макромолекул можно осуществлять с помощью инициаторов, ингибиторов и других веществ. Тем не менее передача и обрыв цепи могут происходить на различных этапах роста цепи, поэтому макромолекулы имеют различную молекулярную массу, т. е. полидисперсны. Полидисперсность является отличительной особенностью полимеров.

Радикальная полимеризация служит промышленным способом синтеза многих важных полимеров, таких, как поливинилхлорид поливинилацетат полистирол полиакрилат, полиэтилен полидиены и различных сополимеров.

Ионная полимеризация также проходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроноакцепторные соединения, в том числе протонные кислоты, например неорганические апротонные кислоты

И др.), металлоорганические соединения и др. В качестве инициаторов анионной полимеризации используются электронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации.

Рост цепи можно записать уравнениями реакции

при катионной полимеризации и

при анионной полимеризации.

Рассмотрим в качестве примера катионную полимеризацию изобутилена с инициаторами Последние образуют комплекс

Обозначив этот комплекс формулой процесс инициирования полимеризации можно представить в виде

Образующийся комплексный катион вместе с противоионом - образует макроион, который обеспечивает рост цепи

С помощью некоторых комплексных инициаторов удается получить полимеры, имеющие регулярную структуру (стереорегулярные полимеры). Например, таким комплексным инициатором может быть комплекс тетрахлорида титана и триалкилалюминия

Метод ионной полимеризации используется в производстве полиизобутилена полиформальдегида полиамидов, например поли-е-капроамида (капрона) синтетических каучуков, например бутадиенового каучука

Методом полимеризации получают всего объема выпускаемых полимеров. Полимеризацию проводят в массе, растворе, эмульсии, суспензии или газовой фазе.

Полимеризация в массе (в блоке) - это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать

состав и структуру полимеров, однако возникает задача удаления растворителя.

Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностноактивные вещества. Достоинство способа - легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток - необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др.

При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспергированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от до Недостаток метода - необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов.

При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты - в жидком или твердом состоянии. Метод применяется для получения полипропилена и других полимеров.

Поликонденсация.

Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов ( и др.), называется поликонденсацией. Поликонденсация бифункциональных соединений получила название линейной, например

Конечным продуктом будет поли-е-капроамид (капрон)

Поликонденсация соединений с тремя или более функциональными группами называется трехмерной. Примером трехмерной поликонденсации служит взаимодействие мочевины и формальдегида:

На первом этапе синтезируется олигомер линейной структуры

На втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением и возникновением сетчатой структуры

Такой полимер невозможно превратить в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером.

Так как в процессе поликонденсации наряду с высокомолекулярными образуются низкомолекулярные продукты, то элементные составы полимеров и исходных веществ не совпадают. Этим поликонденсация отличается от полимеризации. Поликонденсация протекает по ступенчатому механизму, при этом промежуточные продукты являются стабильными, т. е. поликонденсация может остановиться на любой стадии. Образующиеся низкомолекулярные продукты реакции могут взаимодействовать с промежуточными продуктами поликонденсации, вызывая их расщепление (гидролиз, аминолиз, ацидолиз и др.), например

Поэтому низкомолекулярные продукты приходится удалять из реакционной среды.

Монофункциональные соединения, присутствующие в реакционной среде, взаимодействуют с промежуточными продуктами, образуя нереакционноспособные соединения. Это приводит к обрыву цепи, поэтому исходные мономеры должны быть очищены от монофункциональных соединений. Монофункциональные соединения могут образоваться в ходе реакции из-за термической или окислительной деструкции промежуточных соединений. Это приводит к остановке реакции поликонденсации и уменьшению молекулярной массы полимера.

Поликонденсацию проводят либо в расплаве, либо в растворе, либо на межфазной границе.

Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на выше температуры плавления (размягчения) полимеров (обычно Процесс начинается в среде инертного газа и заканчивается в вакууме.

При поликонденсации в растворе используют растворитель, который также может служить абсорбентом низкомолекулярного продукта.

Межфазная поликонденсация происходит на границе раздела фаз газ - раствор или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой.

Методом поликонденсации получают примерно четвертую часть выпускаемых полимеров, например поликапроамид (капрон), полигексаметиленадипинамид (найлон) полиэфиры (полиэтилентере-фталат полиуретаны полисилоксаны полиацетали фенолоформальдегидные смолы

мочевиноформальдегидные смолы и др.