Центр инерции системы материальных точек. Центр масс системы материальных точек. Центр масс тела

Нарисуйте схему системы и отметьте на ней центр тяжести. Если найденный центр тяжести находится вне системы объектов, вы получили неверный ответ. Возможно, вы измерили расстояния от разных точек отсчета. Повторите измерения.

  • Например, если на качелях сидят дети, центр тяжести будет где-то между детьми, а не справа или слева от качелей. Также центр тяжести никогда не совпадет с точкой, где сидит ребенок.
  • Эти рассуждения верны в двумерном пространстве. Нарисуйте квадрат, в котором поместятся все объекты системы. Центр тяжести должен находиться внутри этого квадрата.

Проверьте математические вычисления, если вы получили маленький результат. Если точка отсчета находится на одном конце системы, маленький результат помещает центр тяжести возле конца системы. Возможно, это правильный ответ, но в подавляющем большинстве случаев такой результат указывает на ошибку. Когда вы вычисляли моменты, вы перемножали соответствующие веса и расстояния? Если вместо умножения вы сложили веса и расстояния, вы получите гораздо меньший результат.

Исправьте ошибку, если вы нашли несколько центров тяжести. Каждая система имеет только один центр тяжести. Если вы нашли несколько центров тяжести, скорее всего, вы не сложили все моменты. Центр тяжести равен отношению «суммарного» момента к «суммарному» весу. Не нужно делить «каждый» момент на «каждый» вес: так вы найдете положение каждого объекта.

  • Проверьте точку отсчета, если ответ отличается на некоторое целое значение. В нашем примере ответ равен 3,4 м. Допустим, вы получили ответ 0,4 м или 1,4 м, или другое число, оканчивающееся на «,4». Это потому, что в качестве точки отсчета вы выбрали не левый конец доски, а точку, которая расположена правее на целую величину. На самом деле, ваш ответ верен, независимо от того, какую точку отсчета вы выбрали! Просто запомните: точка отсчета всегда находится в положении x = 0. Вот пример:

    • В нашем примере точка отсчета находилась на левом конце доски и мы нашли, что центр тяжести находится на расстоянии 3,4 м от этой точки отсчета.
    • Если в качестве точки отсчета выбрать точку, которая расположена на расстоянии 1 м вправо от левого конца доски, вы получите ответ 2,4 м. То есть центр тяжести находится на расстоянии 2,4 м от новой точки отсчета, которая, в свою очередь, находится на расстоянии 1 м от левого конца доски. Таким образом, центр тяжести находится на расстоянии 2,4 + 1 = 3,4 м от левого конца доски. Получился старый ответ!
    • Примечание: при измерении расстояния помните, что расстояния до «левой» точки отсчета отрицательные, а до «правой» – положительные.
  • Расстояния измеряйте по прямым линиям. Предположим, на качелях два ребенка, но один ребенок намного выше другого, или один ребенок висит под доской, а не сидит на ней. Проигнорируйте такую разницу и измерьте расстояния по прямой линии доски. Измерение расстояний под углами приведет к близким, но не совсем точным результатам.

    • В случае задачи с качелями-доской помните, что центр тяжести находится между правым и левым концами доски. Позже вы научитесь вычислять центр тяжести более сложных двумерных систем.
  • Дифференциальные уравнения движения системы

    Рассмотрим систему, состоящую из $n$ материальных точек. Выделим какую-нибудь точку системы с массой $m_{k}.$ Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций связей) через $\overline{F}_{k}^{e} $, а равнодействующую всех внутренних сил -- через $\overline{F}_{k}^{l} $. Если точка имеет при этом ускорение $\overline{a_{k} }$, то по основному закону динамики:

    Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

    Уравнения (1) представляют собой дифференциальные уравнения движения системы в векторной форме.

    Проектируя равенства (1) на координатные оси, получим уравнения движения системы в дифференциальной форме в проекциях на эти оси.

    Однако при решении многих конкретных задач необходимость находить закон движения каждой из точек системы не возникает, а бывает достаточно найти характеристики, определяющие движение всей системы в целом.

    Теорема о движении центра масс системы

    Для определения характера движения системы требуется знать закон движения ее центра масс. Центром масс или центром инерции системы называется такая воображаемая точка, радиус-вектор $R$которой выражается через радиус векторы $r_{1} ,r_{2} ,...$материальных точек по формуле:

    $R=\frac{m_{1} r_{1} +m_{2} r_{2} +...+m_{n} r_{n} }{m} $, (2)

    где $m=m_{1} +m_{2} +...+m_{n} $ - общая масса всей системы.

    Чтобы найти этот закон, обратимся к уравнениям движения системы (1) и сложим почленно их левые и правые части. Тогда получим:

    $\sum m_{k} \overline{a}_{k} =\sum \overline{F}_{k}^{e} +\sum \overline{F}_{k}^{l} $. (3)

    Из формулы (2) имеем:

    Беря вторую производную по времени, получаем:

    $\sum m_{k} \overline{a}_{k} =M\overline{a}_{c} $, (4)

    где $\overline{a}_{c} $- ускорение центра масс системы.

    Так как по свойству внутренних сил в системе $\sum \overline{F}_{k}^{l} =0$, получим окончательно из равенства (3), учтя (4):

    $M\overline{a}_{c} =\sum \overline{F}_{k}^{e} $. (5)

    Уравнение (5) выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил или центр масс системы движется как материальная точка , масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

    Проецируя обе части равенства (5) на координатные оси, получим:

    $M\ddot{x}_{c} =\sum \overline{F}_{kx}^{e} $, $M\ddot{y}_{c} =\sum \overline{F}_{ky}^{e} $, $M\ddot{z}_{c} =\sum \overline{F}_{kz}^{e} $. (6)

    Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

    Значение теоремы состоит в следующем:

    Теорема

    • Поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс и допустимо по условиям задачи не принимать во внимание вращательную часть движения тела;
    • Теорема позволяет исключать из рассмотрения все наперед неизвестные внутренние силы. В этом ее практическая ценность.

    Пример

    Металлическое кольцо, подвешенное на нити к оси центробежной машины равномерно вращается с угловой скоростью $\omega $. Нить составляет угол $\alpha $с осью. Найти расстояние от центра кольца до оси вращения.

    \[\omega \] \[\alpha \]

    На нашу систему действует сила тяжести $\overline{N}$ $\overline{N}$ $\alpha \alpha$, сила натяжения нити и центростремительное ускорение.

    Запишем второй закон Ньютона для нашей системы:

    Спроецируем обе части на оси x и y:

    \[\left\{ \begin{array}{c} N\sin \alpha =ma; \\ N\cos \alpha =mg; \end{array} \right.(4)\]

    Разделив одно уравнение на другое, получим:

    Так как $a=\frac{v^{2} }{R} ;$$v=\omega R$, находим искомое расстояние:

    Ответ: $R=\frac{gtg\alpha }{\omega ^{2} } $

    Движение системы кроме действующих сил зависит также от ее суммарной массы и распределения масс. Масса системы (обозначаем М или ) равна арифметической сумме масс всех точек или тел, образующих систему.

    распределение масс в системе определяется значениями масс ее точек и их взаимными положениями, т. е. их координатами Однако оказывается, что при решении тех задач динамики, которые мы будем рассматривать, в частности динамики твердого тела, для учета распределения масс достаточно знать не все величины , а некоторые, выражаемые через них суммарные характеристики. Ими являются: координаты центра масс (выражаются через суммы произведений масс точек системы на их координаты), осевые моменты инерции (выражаются через суммы произведений масс точек системы на квадраты их координат) и центробежные моменты инерции (выражаются через суммы произведений масс точек системы и двух из их координат). Эти характеристики мы в данной главе и рассмотрим.

    Центр масс. В однородном поле тяжести, для которого g=const, вес любой частицы тела пропорционален ее массе. Поэтому о распределении масс в теле можно судить по положению его центра тяжести. Преобразуем формулы (59) из § 32, определяющие координаты центра тяжести тела, к виду, явно содержащему массу. Для этого положим в названных формулах , после чего, сократив на g, найдем:

    В полученные равенства входят теперь массы материальных точек (частиц), образующих тело, и координаты этих точек. Следовательно, положение точки действительно характеризует распределение масс в теле или в любой механической системе, если под понимать соответственно массы и координаты точек системы.

    Геометрическая точка С, координаты которой определяются формулами (1), называется центром масс или центром инерции механической системы.

    Если положение центра масс определять его радиусом-вектором то из равенств (1) для получается формула

    где - радиусы-векторы точек, образующих систему.

    Из полученных результатов следует, что для твердого тела, находящегося в однородном поле тяжести, положения центра масс и центра тяжести совпадают. Но в отличие от центра тяжести понятие о центре масс сохраняет свой смысл для тела, находящегося в любом силовом поле (например, в центральном поле тяготения), и, кроме того, как характеристика распределения масс, имеет смысл не только для твердого тела, но и для любой механической системы.


    Термин «центр масс» используется не только в механике и в расчетах движения но и обыденной жизни. Просто люди не всегда задумываются о том, какие же законы природы проявляются в той или иной ситуации. Например, фигуристы в парном катании активно используют центр масс системы, когда раскручиваются, взявшись за руки.

    Понятие центра масс также применяется при проектировке кораблей. Необходимо учесть не просто два тела, а огромное их количество и все привести к единому знаменателю. Ошибки в расчетах означают отсутствие устойчивости корабля: в одном случае он будет чрезмерно погружен в воду, рискуя пойти ко дну при самых незначительных волнах; а в другом слишком приподнят над уровнем моря, создавая опасность переворота на бок. Кстати, именно поэтому каждая вещь на борту должна быть на своем месте, предусмотренным расчетами: наиболее массивные в самом низу.

    Центр масс используется не только в отношении небесных тел и проектировании механизмов, но и при изучении «поведения» частиц микромира. К примеру, многие из них рождаются парами (электрон-позитрон). Обладая изначальным вращением и подчиняясь законам притяжения/отталкивания, они могут быть рассмотрены как система с общим центром масс.

    Урок «Центр масс»

    Регламент: 2 урока

    Цель: Познакомить учащихся с понятием «центр масс» и его свойствами.

    Оборудование: фигуры из картона или фанеры, «неваляшка», перочинный нож, карандаши.

    План урока

    Этапы урока время методы и приемы

    I Введение учащихся 10 фронтальный опрос, работа учащихся у доски.

    в проблему урока

    II. Изучение нового 15-20 Рассказ учителя, решение задачи,

    материала: 10 экспериментальное задание

    III Отработка нового 10 сообщения учащихся

    материала: 10-15 решение задач,

    15 фронтальный опрос

    IV.Выводы. Домашнее 5-10 Устное обобщение материала учителем.

    задание Запись на доске

    Ход урока.

    I Повторение 1. Фронтальный опрос: плечо силы, момент силы, условие равновесия, виды равновесия

    Эпиграф: Центром тяжести каждого тела является некоторая располо-женная внутри его точка - такая, что если за нее мысленно подвесить тело, то оно остается в покое и сохраняет первона-чальное положение.

    II . Объяснение нового материала

    Пусть дано тело или система тел. Мысленно разобьем тело на сколь угодно малые части с массами m1, m2, m3… Каждую из этих частей можно рассматривать как материальную точку. Положение в пространстве i-ой материальной точки с массой mi определяется радиус-вектором r i (рис. 1.1). Масса тела есть сумма масс отдельных его частей: т = ∑ mi.

    Центром масс тела (системы тел) называет-ся такая точка С, радиус-вектор которой определяется по формуле

    r = 1/m∙∑ mi r i

    Можно показать, что положение центра масс относительно тела не за-висит от выбора начала координат О, т.е. данное выше определение центра масс однозначно и корректно.

    Центр масс однородных симметричных тел рас-положен в их геометрическом центре или на оси симметрии, центр масс у плоского тела в виде произвольного треугольника находится на пересече-нии его медиан.

    Решение задачи

    ЗАДАЧА 1. На легком стержне (рис. 1.2) закреплены однородные ша-ры массами m1 = 3 кг, m2 = 2 кг, m3 = 6 кг, и m4 = 3 кг. Расстояние между центрами любых ближайших шаров

    а = 10 см. Найти положе-ние центра тяжести и центра масс конструкции.

    РЕШЕНИЕ. Положение относительно шаров центра тяжести конструкции не зависит от ориентации стержня в пространстве. Для ре-шения задачи удобно располо-жить стержень горизонтально, как показано на рисунке 2. Пусть центр тяжести находится на стержне на расстоянии L от центра левого шара, т.е. от т. А. В центре тяжести приложена равнодействующая всех сил тяжести и ее момент относительно оси А равен сумме моментов сил тяжести шаров. Имеем r = (m1 + m2 + m3 + m4) g ,

    R L = m2gα + m 3 g 2 а + m 4 g 3 а.

    Отсюда L=α (m1 +2m3 + 3m4)/ (m1 + m2 + m3 + m4) ≈ 16,4 см

    ОТВЕТ. Центр тяжести совпадает с центром масс и находится, в точке С на расстоянии L=16,4см от центра левого шара.

    Оказывается, что у центра масс тела (или системы тел) есть ряд за-мечательных свойств. В динамике показывается, что импульс произвольно движущегося тела равен произведению массы тела на скорость его центра масс и что центр масс движется так, как если бы все внешние силы, действующие на тело, были приложены в центре масс, а масса все-го тела была сосредоточена в нем.

    Центром тяжести тела, находящегося в поле тяготения Земли, на-зывают точку приложения равнодействующей всех сил тяжести, дейст-вующих на все части тела. Эта равнодействующая называется силой тя-жести, действующей на тело. Сила тяжести, приложенная в центре тя-жести тела, оказывает на тело такое же воздействие, как и нее силы тя-жести, действующие на отдельные части тела.

    Интересен случай, когда размеры тела намного меньше размеров Зем-ли. Тогда можно считать, что на все части тела действуют параллельные силы тяжести, т.е. тело находится в однородном поле тяжести. У парал-лельных и одинаково направленных сил всегда есть равнодействующая, что можно доказать. Но при определенном положении тела в простран-стве можно указать только линию действия равнодействующей всех параллельных сил тяжести, точка ее приложения останется пока неопреде-ленной, т.к. для твердого тела любую силу можно переносить вдоль ли-нии ее действия. Как же быть с точкой приложения?

    Можно показать, что при любом положении тела в однородном поле тяжести, линия действия равнодействующей всех сил тяжести, действу-ющих на отдельные части тела, проходят через одну и ту же точку, не-подвижную относительно тела. В этой точке и прикладывается равно-действующая, а сама точка будет центром тяжести тела.

    Положение центра тяжести относительно тела зависит только от фор-мы тела и распределения массы в теле и не зависит от положения тела в однородном поле тяжести. Центр тяжести не обязательно находится в са-мом теле. Например, у обруча в однородном поле тяжести центр тяжести лежит в его геометрическом центре.

    В однородном поле тяжести центр тяжести те-ла совпадает с его центром масс.

    В подавляющем боль-шинстве случаев один термин безбо-лезненно можно заменять другим.

    Но: центр масс тела су-ществует независимо от наличия поля тяжести, а о центре тяжести мож-но говорить только при наличии силы тяжести.

    Местоположение центра тяжести тела, а значит и центра масс, удобно находить, учитывая симметричность тела и используя понятие момента силы.

    Если плечо силы равно нулю, то момент силы равен нулю и такая сила не вызывает вращательного движения тела.

    Следовательно, если линия действия силы проходит через центр масс, то оно движется поступательно.

    Таким образом, можно определить центр масс любой плоской фигуры. Для этого надо закрепить ее в одной точке, дав ей возможность свободно поворачиваться. Она установится так, чтобы сила тяжести, поворачивающая ее, проходила через центр масс. В точке закрепления фигуры подвесим нить с грузом (гайкой), проведем линию вдоль подвеса (т.е. линию действия силы тяжести). Повторим действия, закрепив фигуру в другой точке. Пересечение линий действия сил тяжести - центр масс тела

    Экспериментальное задание: определить центр тяжести плоской фигуры (по приготовленным ранее учащимися фигурам из картона или фанеры).

    Инструкция: закрепляем фигурку на штативе. Подвешиваем за один из углов фигуры отвес. Проводим линию действия силы тяжести. Поворачиваем фигуру, повторяем действие. Центр масс лежит в точке пересечения линий действия силы тяжести.

    Быстро справившимся с заданием учащимся можно дать дополнительное задание: прикрепить к фигуре груз (металлический болт) и определить новое положение центра масс. Сделать вывод.

    Изучение замечательных свойств «центров», которому более двух тыся-челетий, оказалось полезным не толь-ко для механики - например, при конструировании транспортных средств и военной техники, расчете устойчивости сооружений или для вывода уравнений движения реактив-ных аппаратов. Вряд ли Архимед мог даже помыслить о том, что поня-тие центра масс окажется весьма удоб-ным для исследований в ядерной фи-зике или в физике элементарных час-тиц.

    Сообщения учащихся:

    В своем труде «О равновесии плос-ких тел» Архимед употреблял понятие центра тяжести, фактически не опре-деляя его. Видимо, оно впервые было введено неизвестным предшественни-ком Архимеда или же им самим, но в более ранней, не дошедшей до нас работе.

    Должно было пройти долгих сем-надцать столетий, прежде чем наука прибавила к исследованиям Архимеда о центрах тяжести новые результаты. Это произошло, когда Леонардо да Винчи сумел найти центр тяжести тет-раэдра. Он же, размышляя об устойчи-вости итальянских наклонных башен, в том числе - Пизанской, пришел к «теореме об опорном многоугольни-ке».

    Выясненные еще Архимедом усло-вия равновесия плавающих тел впос-ледствии пришлось переоткрывать. Занимался этим в конце XVI века: голландский ученый Симон Стевин, применявший, наряду с понятием цен-тра тяжести, и понятие «центр давле-ния» - точку приложения силы давле-ния окружающей тело воды.

    Прин-цип Торричелли (а его имя носят и формулы для расчета центра масс), оказывается, был предвосхищен его учителем Галилеем. В свою очередь, этот принцип лег в основу классичес-кого труда Гюйгенса о маятниковых часах, а также был использован в знаменитых гидростатических иссле-дованиях Паскаля.

    Метод, позволивший Эйлеру изу-чать движение твердого тела под дей-ствием любых сил, состоял в разложе-нии этого движения на перемещение центра масс тела и вращение вокруг проходящих через него осей.

    Для сохранения в неизменном по-ложении предметов при движении их опоры уже несколько столетий приме-няется так называемый карданов под-вес - устройство, в котором центр тяжести тела располагают ниже осей, вокруг которых оно может вращаться. Примером может служить корабельная керосиновая лампа.

    Хотя на Луне сила тяжести в шесть раз меньше, чем на Земле, увеличить там рекорд по прыжкам в высоту уда-лось бы «всего» лишь в четыре раза. К такому выводу приводят расчеты по изменению высоты центра тяжести тела спортсмена.

    Помимо суточного вращения вок-руг своей оси и годового обращения вокруг Солнца, Земля принимает уча-стие еще в одном круговом движении. Вместе с Луной она «крутится» вокруг общего центра масс, расположенного примерно в 4700 километрах от центра Земли.

    Некоторые искусственные спутни-ки Земли снабжены складной штангой в несколько или даже в десятки мет-ров, утяжеленной на конце (так назы-ваемый гравитационный стабилиза-тор). Дело в том, что спутник вытяну-той формы стремится при движении по орбите повернуться вокруг своего центра масс так, чтобы его продольная ось расположилась вертикально. Тог-да он, подобно Луне, будет все время обращен к Земле одной стороной.

    Наблюдения за движением неко-торых видимых звезд свидетельству-ют о том, что они входят в двойные системы, в которых происходит вра-щение «небесных партнеров» вокруг общего центра масс. Одним из невиди-мых компаньонов в такой системе мо-жет быть нейтронная звезда или, воз-можно, черная дыра.

    Объяснение учителя

    Теорема о центре масс: центр масс те-ла может изменить свое положение только под действием внешних сил.

    Следствие теоремы о центре масс: центр масс замкнутой системы тел остается неподвижным при любых взаимодействиях тел системы.

    Решение задачи (у доски)

    ЗАДАЧА 2. Лодка стоит неподвижно в стоячей воде. Человек, находящийся в лодке, переходит с носа на корму. На какое расстояние h сдви-нется лодка, если масса человека m= 60кг, масса лодки М = 120кг, длина лодки L=3м? Сопротивлением воды пренебречь.

    РЕШЕНИЕ. Воспользуемся условием задачи, что начальная скорость центра масс равна нулю (лодка и человек вначале покоились) и сопротивление воды отсутствует (никакие внешние силы в горизонтальном направлении на систему «человек-лодка» не действуют). Следователь-но, координата центра масс системы в горизонтальном направлении не изменилась. На рис.3 изображено начальное и конечное положение лодки и человека. Начальная координата х0 центра масс х0 = (mL+ML/2)/(m+M)

    Конечная координата х центра масс х = (mh+M(h+L/2))/(m+M)

    Приравнивая х0 = х, находим h= mL/(m+M) =1м

    Дополнительно: сборник задач Степановой Г.Н. №393

    Объяснение учителя

    Вспоминая условия равновесия, мы выяснили, что

    Для тел, имеющих площадь опоры, устойчивое равновесие наблюдается в том случае, когда линия действия силы тяжести проходит через основание.

    Следствие: чем больше площадь опоры и ниже центр тяжести, тем устойчивее положение равновесия.

    Демонстрация

    Поставьте детскую игрушку неваляш-ку (Ваньку - Встаньку) на шерохова-тую доску и приподнимите правый край доски. В какую сторону откло-нится «голова» игрушки при сохране-нии ее равновесия?

    Объяснение: Центр тяжести С неваляшки находится ниже геометрического центра О шарообразной поверхности «туловища». В положе-нии равновесия точка С и точка касания А игрушки с на-клонной плоскостью должны находиться на одной вертикали; следовательно «голова» неваляшки отклонится влево

    Как объяснить сохранение рав-новесия в случае, показанном на ри-сунке?

    Объяснение: Центр тяжести системы карандаш - нож лежит ниже точ-ки опоры

    III Закрепление. Фронтальный опрос

    Вопросы и задачи

    1. При перемещении тела с экватора на полюс действующая на него сила тяжести меняется. Отражается ли это на положении центра тяжести тела?

    Ответ: нет, т.к. относительные изменения силы тяжести всех элементов тела одинаковы.

    2. Можно ли найти центр тяжести «гантели», состоящей из двух массив-ных шариков, соединенных невесо-мым стержнем, при условии, что дли-на «гантели» сравнима с диаметром Земли?

    Ответ: нет. Условие существования центра тяжести - однород-ность поля тяготения. В неоднородном гравитационном поле повороты «гантели» вокруг ее центра масс приводят к тому, что линии действия L1 и L2, равнодействующих сил тяжести, приложенных к шарикам, не имеют общей точки

    3. Почему при резком торможении автомобиля его передняя часть опус-кается?

    Ответ: при торможении на колеса со стороны дороги действует сила трения, создающая вращающий момент вокруг центра масс автомобиля.

    4. Где находится центр тяжести буб-лика?

    Ответ: в дырке!

    5. В цилиндрический стакан понем-ногу наливают воду. Как будет изме-няться положение центра тяжести си-стемы стакан - вода?

    Ответ: Центр тяжести системы сначала будет понижаться, а потом - повышаться.

    6. Какой длины конец надо отрезать от однородного стержня, чтобы его центр тяжести сместился на ∆ℓ?

    Ответ: длиной 2∆ℓ.

    7. Однородный стержень согну-ли посередине под прямым углом. Где оказался теперь его центр тяжес-ти?

    Ответ: в точке О — середине отрезка О1О2, соединяющего сере-дины участков АВ и ВС стержня

    9. Неподвижная космическая ста-ция представляет собой цилиндр. Космонавт начинает круговой обход ста-ции по ее поверхности. Что произойдет со станцией?

    Ответ: с танция придет во вращение в противоположную сторо-ну, причем ее центр будет описывать окружность вокруг об-щего с космонавтом центра масс.

    11. Почему трудно передвигаться на ходулях?

    Ответ: центр тяжести человека на ходулях значительно повыша-ется, а площадь его опоры на землю уменьшается.

    12. Когда канатоходцу легче удер-жать равновесие - при обычном пере-движении по канату или при переносе сильно изогнутого коромысла, нагру-женного ведрами с водой?

    Ответ: Во втором случае, так как центр масс канатоходца с вед-рами лежит ниже, т.е. ближе к опоре - канату.

    IV Домашнее задание: (выполняется желающими - задачи трудные, решившие их получают "5").

    *1. Найдите центр тяжести системы шаров, находящихся в вершинах равностороннего невесомого треугольника, изображенного на рисунке

    Ответ: центр тяжести лежит на середине биссектрисы угла, в вершине которого находится шар массой 2m

    *2. Глубина лунки в доске, в кото-рую вставлен шар, в два раза меньше радиуса шара. При каком угле накло-на доски к горизонту шар выскочит из лунки?