Вычисление объема сферы. Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Прежде чем начать изучать понятие шара, что такое объём шара, рассматривать формулы исчисления его параметров, необходимо вспомнить о понятии круга, изучаемом ранее в курсе геометрии. Ведь большинство действий в трехмерном пространстве аналогичны или вытекают из двумерной геометрии с поправкой на появление третьей координаты и третьей степени.

Что такое круг?

Круг - это фигура на декартовой плоскости (изображена на рисунке 1); наиболее часто определение звучит как «геометрическое место всех точек на плоскости, расстояние от которых до заданной точки (центра) не превышает некоего неотрицательного числа, называемого радиусом».

Как видим по рисунку, точка О - это центр фигуры, а множество абсолютно всех точек, что заполняют круг, к примеру, А, В, С, К, Е, находятся не далее заданного радиуса (не выходят за пределы окружности, изображенной на рис. 2).

Если радиус равен нулю, то круг превращается в точку.

Проблемы с пониманием

Ученики часто путают эти понятия. Легко запомнить, проведя аналогию. Обруч, который дети крутят на уроках физической культуры, - окружность. Понимая это или запомнив, что первые буквы обоих слов - "О", дети мнемонически будут понимать разницу.

Введение понятия «шар»

Шар - это тело (рис. 3), ограниченное некой сферической поверхностью. Что за «сферическая поверхность», станет ясно из ее определения: это геометрическое место всех точек на поверхности, расстояние от которых до заданной точки (центра) не превышает некоего неотрицательного числа, называемого радиусом. Как видим, понятия круга и сферической поверхности аналогичны, только разнятся пространства, в которых они находятся. Если изобразить шар в двумерном пространстве, мы получаем круг, границей которого является окружность (у шара граница - сферическая поверхность). На рисунке мы видим сферическую поверхность с радиусами ОА = ОВ.

Шар замкнутый и открытый

В векторном и метрическом пространствах также рассматриваются два понятия, связанные со сферической поверхностью. Если шар включает эту сферу в себя, то он называется замкнутым, а если же нет, то в таком случае шар является открытым. Это более "продвинутые" понятия, их изучают в институтах при введении в анализ. Для простого, даже бытового использования будет достаточно и тех формул, которые изучаются в курсе стереометрии 10-11 классов. Именно такие, доступные практически каждому среднестатистическому образованному человеку понятия будут рассмотрены далее.

Понятия, которые нужно знать для следующих вычислений

Радиус и диаметр.

Радиус шара и его диаметр определяются так же, как у круга.

Радиус - отрезок, соединяющий любую точку на границе шара и точку, являющуюся центром шара.

Диаметр - отрезок, соединяющий две точки на границе шара и проходящий через его центр. Рисунок 5а наглядно демонстрирует, какие отрезки являются радиусами шара, а на рисунке 5б изображены диаметры сферы (отрезки, проходящие через точку О).

Сечения в сфере (шаре)

Любое сечение сферы является кругом. Если оно проходит через центр шара, то называется большим кругом (окружность с диаметром АВ), остальные сечения - малыми кругами (окружность с диаметром DC).

Площадь данных кругов вычисляется по следующим формулам:

Здесь S - это обозначение площади, R - радиуса, D - диаметра. Также присутствует константа, равная 3,14. Но не стоит путать, что для исчисления площади большого круга используют радиус или диаметр самого шара (сферы), а для определения площади требуются размеры радиуса именно малой окружности.

Таких сечений, которые проходят через две точки одного диаметра, лежащих на границе шара, можно провести бесчисленное число. Как пример - наша планета: две точки на Северном и Южном полюсах, которые являются концами земной оси, а в геометрическом смысле - концами диаметра, и меридианы, которые проходят через эти две точки (рисунок 7). То есть число больших кругов у сферы по количеству стремится к бесконечности.

Части шара

Если отсечь от сферы при помощи некоторой плоскости «кусочек» (рисунок 8), то он будет называться сферическим или шаровым сегментом. У него будет высота - перпендикуляр из центра секущей плоскости до сферической поверхности О 1 К. Точка К на сферической поверхности, в которую приходит высота, называется вершиной сферического сегмента. А малый круг с радиусом О 1 Т (в данном случае, согласно с рисунком, плоскость не прошла через центр сферы, но если сечение будет проходить через центр, то круг сечения будет большим), образованный при отсечении шарового сегмента, будет называться основанием нашего кусочка шара - сферического сегмента.

Если соединить каждую точку основания сферического сегмента с центром сферы, мы получим фигуру под названием "шаровой сектор".

Если через сферу проходят две плоскости, которые между собой параллельны, то та часть сферы, которая заключена между ними, называется шаровым слоем (рисунок 9, где изображена сфера с двумя плоскостями и отдельно - шаровой слой).

Поверхность (выделенная часть на рисунке 9 справа) этой части сферы называется поясом (снова для лучшего понимания можно провести аналогию с земным шаром, а именно с его климатическими поясами - арктическими, тропическими, умеренными и т. д.), а круги сечения будут основаниями шарового слоя. Высота слоя - часть диаметра, проведённого перпендикулярно к секущим плоскостям из центров оснований. Существует также понятие шаровой сферы. Она образуется в том случае, когда плоскости, которые параллельны друг другу, не пересекают сферу, а касаются ее в одной точке каждая.

Формулы исчисления объёма шара и площади его поверхности

Шар образуется при вращении вокруг неподвижного диаметра полукруга или круга. Для вычислений разных параметров данного объекта понадобится не так уж много данных.

Объем шара, формула для исчисления которого указана выше, выведен посредством интегрирования. Разберемся по пунктам.

Рассматриваем круг в двумерной плоскости, ведь, как было сказано выше, именно круг лежит в основе построения шара. Используем лишь его четвертую часть (рисунок 10).

Берем круг с единичным радиусом и центром в начале координат. Уравнение такого круга выглядит следующим образом: Х 2 + У 2 = R 2 . Выражаем отсюда У: У 2 = R 2 - Х 2 .

Обязательно отметим, что полученная функция неотрицательная, непрерывная и убывающая на отрезке Х (0; R), ведь значение Х в том случае, когда мы рассматриваем четверть круга, лежит от нуля до значения радиуса, то есть до единицы.

Следующее, что мы делаем, это вращаем нашу четверть круга вокруг оси абсцисс. В результате мы получим полушар. Чтобы определить его объём, прибегнем к методам интегрирования.

Так как это объём лишь полушара, увеличиваем результат в два раза, откуда получаем, что объем шара равен:

Мелкие нюансы

Если необходимо вычислить объем шара через его диаметр, помним о том, что радиус - это половина диаметра, и подставляем это значение в вышеуказанную формулу.

Также к формуле объема шара можно дойти через площадь его граничащей поверхности - сферы. Напомним, что площадь сферы вычисляется по формуле S = 4πr 2 , проинтегрировав которую, также придем к вышеуказанной формуле объема шара. Из этих же формул можно выразить радиус, если в условии задачи есть значение объема.

Сферические фигуры окружают нас практически везде, однако, мы настолько к ним привыкли, что не придаем этому внимания. Тем временем, случается так, что нам необходимо узнать объем какой-нибудь из них. Но все ли знают, как найти объем шара ? Углубляться в школьные воспоминания, чтобы восстановить в голове курс геометрии? Не затрудняйте себе задачу. Давайте лучше включим логику, и разберемся с этим вопросом.

Инструкция:

  • Начнем с примера, когда формула объема шара нам не понадобится - представим, что у нас есть возможность произвести вычисления практическим путем . Один из наиболее простых способов это сделать - последовать по стопам Архимеда, определив объем не самого шара непосредственно, а вытесненной им воды . Для этого нужно положить его в емкость, подходящую по размерам, предварительно отметив уровень воды. Погрузив сферу целиком в жидкость, сделайте повторные измерения. Теперь осталось найти разницу между получившимися цифрами. Конечно, лучше всего будет поместить шар в емкость с делениями, к примеру, в мерный стакан - если позволяет размер. Таким образом, мы сразу получим нужную характеристику - обычно деления показаны в миллилитрах. В ином случае, просто переведите число в кубические метры.
  • Если вы уверены в том, из какого именно материала сделана сфера, постарайтесь определить ее плотность - эта информация наверняка найдется на просторах всемирной сети. В этой ситуации от вас потребуется лишь взвесить данную фигуру, после чего воспользоваться простой формулой объема шара, разделив вес предмета на его плотность: V=m/p .
  • Может случиться, что предыдущие варианты вам недоступны. Не отчаивайтесь - если есть возможность узнать радиус шара, к нам на помощь придет нужная формула, более сложная, чем предыдущая, но доступная. Нам необходимо умножить число Пи на 4, после чего перемножить получившееся число на значение радиуса в кубе. В итоге разделите все это на 3, и получите объем шара: V=4*π*r³/3 . Разберем простой пример: радиус сферы - 30 см ., тогда объем фигуры будет составлять: 4*3,14*30³/3 = 11340см³ ≈ 0,113м³.
  • Бывает и так, что гораздо легче найти диаметр фигуры , нежели его радиус. Этот вариант даже лучше - можно не производить таких сложных вычислений, формула становится значительно проще. Нам нужно будет лишь умножить диаметр в кубе на число Пи, после чего разделить получившееся число на шесть: V=π*d³/6 . К примеру, вы узнали, что диаметр вашей сферы составляет 25 см., тогда ее объем будет равняться: 3,14*25³/6 = 8177,08333см³ ≈ 0,818м³.

Многие тела, которые мы встречаем в жизни или о которых слышали, имеют шарообразную форму, например футбольный мяч, падающая капля воды во время дождя или наша планета. В связи с этим является актуальным рассмотрение вопроса, как находить объем шара.

Фигура шар в геометрии

Перед тем как ответить на вопрос, шара, рассмотрим подробнее это тело. Некоторые люди путают его со сферой. Внешне они действительно похожи, однако шар - это заполненный внутри объект, сфера же представляет собой лишь внешнюю оболочку шара бесконечно малой толщины.

С точки зрения геометрии шар можно представить совокупностью точек, причем те из них, которые лежат на его поверхности (они образуют сферу), находятся на одинаковом расстоянии от центра фигуры. Это расстояние называют радиусом. По сути, радиус - это единственный параметр, с помощью которого можно описать любые свойства шара, такие как площадь его поверхности или объем.

На рисунке ниже приведен пример шара.

Если внимательно посмотреть на этот идеальный круглый объект, то можно догадаться, как его получить из обычного круга. Для этого достаточно вращать эту плоскую фигуру вокруг оси, совпадающей с его диаметром.

Одним из известных древних литературных источников, в котором достаточно подробно рассматриваются свойства этой объемной фигуры, является труд греческого философа Евклида - "Элементы".

Площадь поверхности и объем

Рассматривая вопрос, как находить объем шара, помимо этой величины, следует привести формулу для его площади, поскольку оба выражения можно связать друг с другом, как будет показано ниже.

Итак, чтобы вычислить объем шара, следует применить одну из следующих двух формул:

  • V = 4/3 *pi * R3;
  • V = 67/16 * R3.

Здесь R - радиус фигуры. Первая из приведенных формул является точной, однако, чтобы воспользоваться этим преимуществом, необходимо использовать соответствующее число знаков после запятой для числа pi. Второе выражение дает вполне хороший результат, отличаясь от первого всего на 0,03 %. Для ряда практических задач этой точности более чем достаточно.

Равна этой величине для сферы, то есть выражается формулой S = 4 * pi * R2. Если отсюда выразить радиус, а затем подставить его в первую формулу для объема, тогда получим: R = √ (S / (4 * pi)) = > V = S / 3 * √ (S / (4 * pi)).

Таким образом, мы рассмотрели вопросы, как найти объем шара через радиус и через площадь его поверхности. Эти выражения можно с успехом применять на практике. Далее в статье приведем пример их использования.

Задача с каплей дождя

Вода, когда находится в невесомости, приобретает форму шарообразной капли. Связано это с наличием сил поверхностного натяжения, которые стремятся минимизировать площадь поверхности. Шар, в свою очередь, обладает наименьшим ее значением среди всех геометрических фигур с одинаковой массой.

Во время дождя падающая капля воды находится в невесомости, поэтому ее формой является шар (здесь пренебрегаем силой сопротивления воздуха). Необходимо определить объем, площадь поверхности и радиус этой капли, если известно, что ее масса составляет 0,05 грамма.

Объем определить просто, для этого следует поделить известную массу на плотность H 2 O (ρ = 1 г/см 3). Тогда V = 0,05 / 1 = 0,05 см 3 .

Зная, как найти объем шара, следует выразить из формулы радиус и подставить полученное значение, имеем: R = ∛ (3 * V / (4 * pi)) = ∛ (3 * 0,05 / (4 * 3,1416)) = 0,2285 см.

Теперь значение радиуса подставляем в выражение для площади поверхности фигуры, получаем: S = 4 * 3,1416 * 0,22852 = 0,6561 см 2 .

Таким образом, зная, как находить объем шара, мы получили ответы на все вопросы задачи: R = 2,285 мм, S = 0,6561 см 2 и V = 0,05 см 3 .

Определение.

Сфера (поверхность шара ) - это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар - это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) - это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) - это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V = 4 π R 3 = 1 π D 3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x - x 0) 2 + (y - y 0) 2 + (z - z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы - это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) - это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость - это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость - это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 - m 2 ,

Где R - радиус сферы (шара), m - расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) - это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере - это прямая, которая касается сферы только в одной точке.

Определение. Касательная плоскость к сфере - это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара - это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh

где V – искомый объем шара , π – 3,14 , R – радиус.

Таким образом, при радиусе 10 сантиметров объем шара равен:

V 3,14 × 10 3 = 4186,7

кубических сантиметров.

В геометрии шар определяется как некое тело, представляющее собой совокупность всех точек пространства, которые располагаются от центра на расстоянии, не более заданного, называемого радиусом шара. Поверхность шара именуется сферой, а сам он образуется путем вращения полукруга около его диаметра, остающегося неподвижным.

С этим геометрическим телом очень часто сталкиваются инженеры-конструкторы и архитекторы, которым часто приходится вычислять объем шара . Скажем, в конструкции передней подвески подавляющего большинства современных автомобилей используются так называемые шаровые опоры, в которых, как нетрудно догадаться из самого названия, одними из основных элементов являются именно шары. С их помощью происходит соединение ступиц управляемых колес и рычагов. От того, насколько правильно будет вычислен их объем, во многом зависит не только долговечность этих узлов и правильность их работы, но и безопасность движения.

В технике широчайшее распространение получили такие детали, как шариковые подшипники, с помощью которых происходит крепление осей в неподвижных частях различных узлов и агрегатов и обеспечивается их вращение. Следует заметить, что при их расчете конструкторам требуется найти объем шара (а точнее – шаров, помещаемых в обойму) с высокой степенью точности. Что касается изготовления металлических шариков для подшипников, то они производятся из металлической проволоки при помощи сложного технологического процесса, включающего в себя стадии формовки, закалки, грубой шлифовки, чистовой притирки и очистки. Кстати говоря, те шарики, которые входят в конструкцию всех шариковых ручек, изготавливаются по точно такой же технологии.

Достаточно часто шары используются и в архитектуре, причем там они чаще всего являются декоративными элементами зданий и других сооружений. В большинстве случаев они изготавливаются из гранита, что зачастую требует больших затрат ручного труда. Конечно, соблюдать столь высокую точность изготовления этих шаров, как тех, которые применяются в различных агрегатах и механизмах, не требуется.

Без шаров немыслима такая интересная и популярная игра, как бильярд. Для их производства используются различные материалы (кость, камень, металл, пластмассы) и используются различные технологические процессы. Одним из основных требований, предъявляемых к бильярдным шарам, является их высокая прочность и способность выдерживать высокие механические нагрузки (прежде всего, ударные). Кроме того, их поверхность должна представлять собой точную сферу для того, чтобы обеспечивалось плавное и ровное качение по поверхности бильярдных столов.

Наконец, без таких геометрических тел, как шары, не обходится ни одна новогодняя или рождественская елка. Изготавливаются эти украшения в большинстве случаев из стекла методом выдувания, и при их производстве наибольшее внимание уделяется не точности размеров, а эстетичности изделий. Технологический процесс при этом практически полностью автоматизирован и вручную елочные шары только упаковываются.